Kernelization of Two Path Searching Problems on Split Graphs

被引:1
|
作者
Yang, Yongjie [1 ]
Shrestha, Yash Raj [2 ]
Li, Wenjun [3 ]
Guo, Jiong [4 ]
机构
[1] Univ Saarbrucken, Saarbrucken, Germany
[2] ETH, Dept Management Technol & Econ, Zurich, Switzerland
[3] Changsha Univ Sci & Technol, Hunan Prov Key Lab Intelligent Proc Big Data Tran, Sch Comp & Commun Engn, Changsha, Hunan, Peoples R China
[4] Shandong Univ, Sch Comp Sci & Technol, Jinan, Shandong, Peoples R China
来源
关键词
DISJOINT PATHS; KERNELS; CYCLES;
D O I
10.1007/978-3-319-39817-4_23
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In the k-Vertex-Disjoint Paths problem, we are given a graph G and k terminal pairs of vertices, and are asked whether there is a set of k vertex-disjoint paths linking these terminal pairs, respectively. In the k-Path problem, we are given a graph and are asked whether there is a path of length k. It is known that both problems are NP-hard even in split graphs, which are the graphs whose vertices can be partitioned into a clique and an independent set. We study kernelization for the two problems in split graphs. In particular, we derive a 4k vertex-kernel for the k-Vertex-Disjoint Paths problem and a 3/2k(2) + 1/2k vertex-kernel for the k-Path problem.
引用
收藏
页码:238 / 249
页数:12
相关论文
共 50 条
  • [1] On the kernelization of split graph problems
    Yang, Yongjie
    Shrestha, Yash Raj
    Li, Wenjun
    Guo, Jiong
    [J]. THEORETICAL COMPUTER SCIENCE, 2018, 734 : 72 - 82
  • [2] Kernelization hardness of connectivity problems in d-degenerate graphs
    Cygan, Marek
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Wojtaszczyk, Jakub Onufry
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (15) : 2131 - 2141
  • [3] Kernelization Hardness of Connectivity Problems in d-Degenerate Graphs
    Cygan, Marek
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Wojtaszczyk, Jakub Onufry
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2010, 6410 : 147 - 158
  • [4] Path Problems in Temporal Graphs
    Wu, Huanhuan
    Cheng, James
    Huang, Silu
    Ke, Yiping
    Lu, Yi
    Xu, Yanyan
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2014, 7 (09): : 721 - 732
  • [5] PATH PROBLEMS IN STRUCTURED GRAPHS
    ANCONA, M
    DEFLORIANI, L
    DEOGUN, JS
    [J]. COMPUTER JOURNAL, 1986, 29 (06): : 553 - 563
  • [7] Composite path algebras for solving path problems in graphs
    Manger, R
    [J]. ARS COMBINATORIA, 2006, 78 : 137 - 150
  • [8] Kernelization for Cycle Transversal Problems
    Xia, Ge
    Zhang, Yong
    [J]. ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, 2010, 6124 : 293 - +
  • [9] Longest path problems on Ptolemaic graphs
    Takahara, Yoshihiro
    Teramoto, Sachio
    Uehara, Ryuhei
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2008, E91D (02) : 170 - 177
  • [10] Searching and indexing genomic databases via kernelization
    Gagie, Travis
    Puglisi, Simon J.
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2015, 3