Optimal sampling for the estimation of dispersion parameters in soil columns using an Iterative Genetic Algorithm

被引:18
|
作者
Catania, Federico [1 ]
Paladino, Ombretta [1 ]
机构
[1] Univ Genoa, DIST, CIMA Ctr Ric Interuniv Monitoraggio Ambientale, I-17100 Savona, Italy
关键词
genetic algorithm; D-optimality; optimal experimental design; parameter estimation; solute transport; groundwater; EXPERIMENTAL-DESIGN; OUTFLOW EXPERIMENTS; POROUS-MEDIA; GROUNDWATER; TRANSPORT; MODEL; IDENTIFICATION;
D O I
10.1016/j.envsoft.2008.05.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In groundwater modelling, an appropriate soil characterization is strongly recommended to evaluate both the fate and transport of solutes and the performance of groundwater remediation criterion, though parameter estimation techniques are often blocked by several inherent difficulties (i.e. ill-posedness and insufficient quantity and quality of observation data). In this paper, an iterative decision model is built and tested in order to locate the position of a fixed number of sample points in a soil column experiment to obtain optimal parameter estimation (OPE), minimizing the parametric uncertainty and the overall cost of the experimental campaign. Starting from an initial guess of chosen points (given by a fraction of the total disposable ones), an Iterative Genetic Algorithm (ICA) is capable of finding the best points able to minimize a first-order approximation of the parameter covariance matrix. The parameter estimates are updated under a Bayesian scheme, using exclusively the observations collected after the earlier run of minimization, and the iterative process stops when the imposed convergence criterion based on the parameter values is reached. An important contribution of this work is the development of an effective direct search algorithm (IGA) for solving the sampling network optimization problem at a laboratory scale. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:115 / 123
页数:9
相关论文
共 50 条
  • [1] Estimation of riverbank soil erodibility parameters using genetic algorithm
    Karmaker, Tapas
    Das, Ranjan
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2017, 42 (11): : 1953 - 1963
  • [2] Parameters Estimation of a Horizontal Multilayer Soil Using Genetic Algorithm
    Calixto, Wesley Pacheco
    Martins Neto, Luciano
    Wu, Marcel
    Yamanaka, Keiji
    Moreira, Emerson da Paz
    IEEE TRANSACTIONS ON POWER DELIVERY, 2010, 25 (03) : 1250 - 1257
  • [3] Estimation of riverbank soil erodibility parameters using genetic algorithm
    Tapas Karmaker
    Ranjan Das
    Sādhanā, 2017, 42 : 1953 - 1963
  • [4] Iterative estimation algorithm of autoregressive parameters
    Kazlauskas, Kazys
    Kazlauskas, Jaunius
    INFORMATICA, 2006, 17 (02) : 199 - 206
  • [5] Determination of Optimal Double Sampling Plan using Genetic Algorithm
    Sampath, Sundram
    Deepa, S. P.
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2012, 8 (02) : 195 - 203
  • [6] Estimation of multilayer soil parameters using genetic algorithms
    Gonos, IF
    Stathopulos, IA
    IEEE TRANSACTIONS ON POWER DELIVERY, 2005, 20 (01) : 100 - 106
  • [7] Optimal UAV Positioning for a Temporary Network Using an Iterative Genetic Algorithm
    Ceccarelli, Nicholas
    Regis, Paulo Alexandre
    Sengupta, Shamik
    Feil-Seifer, David
    2020 29TH WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC), 2020, : 156 - 161
  • [8] Determination of Multilayer Soil Strength Parameters Using Genetic Algorithm
    Hashemi, Seyyed Mohammad
    Rahmani, Iraj
    CIVIL ENGINEERING JOURNAL-TEHRAN, 2018, 4 (10): : 2383 - 2397
  • [9] Estimation of Dynamic Parameters of a Synchronous Generator using Genetic Algorithm
    Hassannia, Amir
    Darabi, Ahmad
    Alshamali, Mustafa
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2009, 4 (05) : 668 - 673
  • [10] Estimation of Population Pharmacokinetic Model Parameters Using a Genetic Algorithm
    Sepulveda, Carlos
    Montiel, Oscar
    Cornejo, Jose M.
    Sepulveda, Roberto
    FUZZY LOGIC IN INTELLIGENT SYSTEM DESIGN: THEORY AND APPLICATIONS, 2018, 648 : 214 - 221