On Hodge-de Rham Systems in Hyperbolic Clifford Analysis

被引:4
|
作者
Eriksson, Sirkka-Liisa [1 ]
Orelma, Heikki [1 ]
机构
[1] Tampere Univ Technol, Dept Math, Tampere 33720, Finland
关键词
Harmonic differential forms; multi-vector functions; hyperbolic upper half-space;
D O I
10.1063/1.4825535
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider harmonic differential forms and Clifford multi-vector functions on the hyperbolic upper half-space. We see how the operators and their solutions are related and present a Moisil-Theodorescu-type system related to the harmonic multi-vectors.
引用
收藏
页码:492 / 495
页数:4
相关论文
共 50 条
  • [1] Stability of spectra of Hodge-de Rham Laplacians
    Baker, GA
    Dodziuk, J
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1997, 224 (03) : 327 - 345
  • [2] A NONLINEAR HODGE-DE RHAM THEOREM
    SIBNER, RJ
    SIBNER, LM
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 187 - &
  • [3] The Fischer decomposition for Hodge-de Rham systems in Euclidean spaces
    Soucek, Vladimir
    Delanghe, Richard
    Lavicka, Roman
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (01) : 10 - 16
  • [4] Stability of spectra of Hodge-de Rham laplacians
    Garth A. Baker
    Józef Dodziuk
    [J]. Mathematische Zeitschrift, 1997, 224 : 327 - 345
  • [5] ON THE DETERMINANT OF AN HODGE-DE RHAM LIKE OPERATOR
    Craioveanu, Mircea
    Petrisor, Camelia-Ionela
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (02): : 61 - 69
  • [6] Orthogonal Appell Bases for Hodge-de Rham Systems in Euclidean Spaces
    R. Lávička
    [J]. Advances in Applied Clifford Algebras, 2013, 23 : 113 - 124
  • [7] ABSTRACT AND CLASSICAL HODGE-DE RHAM THEORY
    Smale, Nat
    Smale, Steve
    [J]. ANALYSIS AND APPLICATIONS, 2012, 10 (01) : 91 - 111
  • [8] Overview and Comparative Analysis of the Properties of the Hodge-De Rham and Tachibana Operators
    Stepanov, S. E.
    Tsyganok, I. I.
    Mikes, J.
    [J]. FILOMAT, 2015, 29 (10) : 2429 - 2436
  • [9] Conformed decrease of the spectrum of the laplacian of Hodge-de Rham
    Jammes, Pierre
    [J]. MANUSCRIPTA MATHEMATICA, 2007, 123 (01) : 15 - 23
  • [10] Prescription of multiplicity of Laplacian Hodge-de Rham eigenvalues
    Jammes, Pierre
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2011, 86 (04) : 967 - 984