In this paper we define a monoid called the Brauer semigroup for a locally compact Hausdorff groupoid E whose elements consist of Morita equivalence classes of E-dynamical systems. This construction generalizes both the equivariant Brauer semigroup for transformation groups and the Brauer group for a groupoid. We show that groupoid equivalence induces an isomorphism of Brauer semigroups and that this isomorphism preserves the Morita equivalence classes of the respective crossed products, thus generalizing Raeburn's symmetric imprimitivity theorem.
机构:
Univ Fed Santa Catarina, Dept Matemat, BR-88010970 Florianopolis, SC, BrazilUniv Fed Santa Catarina, Dept Matemat, BR-88010970 Florianopolis, SC, Brazil
Exel, Ruy
Pardo, Enrique
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cadiz, Fac Ciencias, Dept Matemat, Campus Puerto Real, Puerto Real 11510, Cadiz, SpainUniv Fed Santa Catarina, Dept Matemat, BR-88010970 Florianopolis, SC, Brazil