Wastewater nutrient removal in a mixed microalgae-bacteria culture: effect of light and temperature on the microalgae-bacteria competition

被引:67
|
作者
Gonzalez-Camejo, J. [1 ]
Barat, R. [1 ]
Paches, M. [1 ]
Murgui, M. [2 ]
Seco, A. [2 ]
Ferrer, J. [1 ]
机构
[1] Univ Politecn Valencia, IIAMA, Cami de Vera S-N, E-46022 Valencia, Spain
[2] Univ Valencia, Dept Ingn Quim, Avinguda Univ, Valencia, Spain
关键词
Bacteria competition; light; microalgae; nutrient removal; wastewater; SCENEDESMUS SP; OXIDIZING BACTERIA; MEMBRANE BIOREACTOR; CARBON-DIOXIDE; NITROGEN; GROWTH; PHYTOPLANKTON; CULTIVATION; BIOENERGY; EFFLUENT;
D O I
10.1080/09593330.2017.1305001
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The aim of this study was to evaluate the effect of light intensity and temperature on nutrient removal and biomass productivity in a microalgae-bacteria culture and their effects on the microalgae-bacteria competition. Three experiments were carried out at constant temperature and various light intensities: 40, 85 and 125 mu E m(-2) s(-1). Other two experiments were carried out at variable temperatures: 23 +/- 2 degrees C and 28 +/- 2 degrees C at light intensity of 85 and 125 mu E m(-2) s(-1), respectively. The photobioreactor was fed by the effluent from an anaerobic membrane bioreactor. High nitrogen and phosphorus removal efficiencies (about 99%) were achieved under the following operating conditions: 85-125 mu E m(-2) s(-1) and 22 +/- 1 degrees C. In the microalgae-bacteria culture studied, increasing light intensity favoured microalgae growth and limited the nitrification process. However, a non-graduated temperature increase (up to 32 degrees C) under the light intensities studied caused the proliferation of nitrifying bacteria and the nitrite and nitrate accumulation. Hence, light intensity and temperature are key parameters in the control of the microalgae-bacteria competition. Biomass productivity significantly increased with light intensity, reaching 50.5 +/- 9.6, 80.3 +/- 6.5 and 94.3 +/- 7.9 mgVSS L-1 d(-1) for a light intensity of 40, 85 and 125 mu E m(-2) s(-1), respectively.
引用
收藏
页码:503 / 515
页数:13
相关论文
共 50 条
  • [1] Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: A review
    Fallahi, Alireza
    Rezvani, Fariba
    Asgharnejad, Hashem
    Nazloo, Ehsan Khorshidi
    Hajinajaf, Nima
    Higgins, Brendan
    CHEMOSPHERE, 2021, 272
  • [2] Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent
    Thi Dong Phuong Nguyen
    Thi Van Anh Le
    Show, Pau Loke
    Thanh Thuy Nguyen
    Minh Hien Tran
    Thi Ngoc Thu Tran
    Lee, Sze Ying
    BIORESOURCE TECHNOLOGY, 2019, 272 : 34 - 39
  • [3] Removal of nitrogen from wastewater using microalgae and microalgae-bacteria consortia
    Jia, Huijun
    Yuan, Qiuyan
    COGENT ENVIRONMENTAL SCIENCE, 2016, 2 (01):
  • [4] Influence of PFDA on the nutrient removal from wastewater by hydrogels containing microalgae-bacteria
    Moran-Valencia, Marien
    Huerta-Aguilar, Carlos Alberto
    Mora, Abrahan
    Mahlknecht, Jurgen
    Saber, Ayman N.
    Cervantes-Aviles, Pabel
    HELIYON, 2023, 9 (06)
  • [5] Towards advanced nutrient removal by microalgae-bacteria symbiosis system for wastewater treatment
    Qv, Mingxiang
    Dai, Dian
    Liu, Dongyang
    Wu, Qirui
    Tang, Chunming
    Li, Shuangxi
    Zhu, Liandong
    BIORESOURCE TECHNOLOGY, 2023, 370
  • [6] Wastewater treatment by microalgae-bacteria co-culture system
    Samsudin, Amirah
    Azmi, Azlin Suhaida
    Nawi, Mohd Nazri Mohd
    Halim, Amanatuzzakiah Abdul
    MALAYSIAN JOURNAL OF MICROBIOLOGY, 2018, 14 (02) : 131 - 136
  • [7] Chlorella vulgarisand Its Phycosphere in Wastewater: Microalgae-Bacteria Interactions During Nutrient Removal
    Wirth, Roland
    Pap, Bernadett
    Bojti, Tamas
    Shetty, Prateek
    Lakatos, Gergely
    Bagi, Zoltan
    Kovacs, Kornel L.
    Maroti, Gergely
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [8] The Effect of Light on Nitrogen Removal by Microalgae-Bacteria Symbiosis System (MBS)
    Wang, Shumin
    Guo, Zhenghao
    Ding, Xiaofan
    Li, Linling
    Jin, Zhongyou
    Zhang, Chengcai
    Liu, Shouping
    Zhou, Yan
    Fan, Gongduan
    WATER, 2023, 15 (11)
  • [9] Microalgae-bacteria models evolution: From microalgae steady-state to integrated microalgae-bacteria wastewater treatment models - A comparative review
    Solimeno, Alessandro
    Garcia, Joan
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 607 : 1136 - 1150
  • [10] The effect of the microalgae-bacteria microbiome on wastewater treatment and biomass production
    Matthew B. Paddock
    Jesús Dionisio Fernández-Bayo
    Jean S. VanderGheynst
    Applied Microbiology and Biotechnology, 2020, 104 : 893 - 905