On Haar digraphical representations of groups

被引:2
|
作者
Du, Jia-Li [1 ]
Feng, Yan-Quan [2 ]
Spiga, Pablo [3 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
[2] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[3] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
基金
中国国家自然科学基金;
关键词
Semiregular group; Regular representation; DRR; GRR; Haar digraph; GRAPHICAL REGULAR REPRESENTATIONS; CAYLEY-GRAPHS; NORMALITY;
D O I
10.1016/j.disc.2020.112032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we extend the notion of digraphical regular representations in the context of Haar digraphs. Given a group G, a Haar digraph Gamma over G is a bipartite digraph having a bipartition {X, Y} such that G is a group of automorphisms of Gamma acting regularly on X and on Y. We say that G admits a Haar digraphical representation (HDR for short), if there exists a Haar digraph over G such that its automorphism group is isomorphic to G. In this paper, we classify finite groups admitting an HDR. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条