Astrea: Automatic Generation of SHACL Shapes from Ontologies

被引:17
|
作者
Cimmino, Andrea [1 ]
Fernandez-Izquierdo, Alba [1 ]
Garcia-Castro, Raul [1 ]
机构
[1] Univ Politecn Madrid, Ontol Engn Grp, Madrid, Spain
来源
SEMANTIC WEB (ESWC 2020) | 2020年 / 12123卷
关键词
SHACL shapes; RDF validation; Ontology; CLOUD;
D O I
10.1007/978-3-030-49461-2_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge Graphs (KGs) that publish RDF data modelled using ontologies in a wide range of domains have populated the Web. The SHACL language is a W3C recommendation that has been endowed to encode a set of either value or model data restrictions that aim at validating KG data, ensuring data quality. Developing shapes is a complex and time consuming task that is not feasible to achieve manually. This article presents two resources that aim at generating automatically SHACL shapes for a set of ontologies: (1) Astrea-KG, a KG that publishes a set of mappings that encode the equivalent conceptual restrictions among ontology constraint patterns and SHACL constraint patterns, and (2) Astrea, a tool that automatically generates SHACL shapes from a set of ontologies by executing the mappings from the Astrea-KG. These two resources are openly available at Zenodo, GitHub, and a web application. In contrast to other proposals, these resources cover a large number of SHACL restrictions producing both value and model data restrictions, whereas other proposals consider only a limited number of restrictions or focus only on value or model restrictions.
引用
收藏
页码:497 / 513
页数:17
相关论文
共 50 条
  • [1] Learning SHACL shapes from knowledge graphs
    Omran, Pouya Ghiasnezhad
    Taylor, Kerry
    Mendez, Sergio Rodriguez
    Haller, Armin
    SEMANTIC WEB, 2023, 14 (01) : 101 - 121
  • [2] Magic Shapes for SHACL Validation
    Ahmetaj, Shqiponja
    Lohnert, Bianca
    Ortiz, Magdalena
    Simkus, Mantas
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (10): : 2284 - 2296
  • [3] AUTOMATIC GENERATION OF EDUCATIONAL QUIZZES FROM DOMAIN ONTOLOGIES
    Rocha, O. Rodriguez
    Zucker, C. Faron
    9TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES (EDULEARN17), 2017, : 4024 - 4030
  • [4] Automatic report generation from ontologies: the MIAKT approach
    Bontcheva, K
    Wilks, Y
    NATURAL LANGUAGE PROCESSING AND INFORMATION SYSTEMS, 2004, 3136 : 324 - 335
  • [5] Automatic generation of tests from domain and multimedia ontologies
    Papasalouros, Andreas
    Kotis, Konstantinos
    Kanaris, Konstantinos
    INTERACTIVE LEARNING ENVIRONMENTS, 2011, 19 (01) : 5 - 23
  • [6] SHACL and ShEx in the Wild: A Community Survey on Validating Shapes Generation and Adoption
    Rabbani, Kashif
    Lissandrini, Matteo
    Hose, Katja
    COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 260 - 263
  • [7] Efficient Validation of SHACL Shapes with Reasoning
    Ke, Jin
    Zacouris, Zenon
    Acosta, Maribel
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2024, 17 (11): : 3589 - 3601
  • [8] Automatic generation of spoken dialogue from medical plans and ontologies
    Beveridge, Martin
    Fox, John
    JOURNAL OF BIOMEDICAL INFORMATICS, 2006, 39 (05) : 482 - 499
  • [9] ProGOMap: Automatic Generation of Mappings From Property Graphs to Ontologies
    Fathy, Naglaa
    Gad, Walaa
    Badr, Nagwa
    Hashem, Mohamed
    IEEE ACCESS, 2021, 9 : 113100 - 113116
  • [10] TOWARDS AUTOMATIC GENERATION OF APPLICATION ONTOLOGIES
    Sacramento, Eveline R.
    Vidal, Vania M. P.
    de Macedo, Jose Antonio F.
    Loscio, Bernadette F.
    Lopes, Fernanda Ligia R.
    Lemos, Fernando
    Casanova, Marco A.
    ICEIS 2010: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL 1: DATABASES AND INFORMATION SYSTEMS INTEGRATION, 2010, : 403 - 406