Fabrication of Microfibrous and Nano-/Microfibrous Scaffolds: Melt and Hybrid Electrospinning and Surface Modification of Poly(L-lactic acid) with Plasticizer

被引:35
|
作者
Yoon, Young Il [1 ]
Park, Ko Eun [1 ]
Lee, Seung Jin [2 ]
Park, Won Ho [1 ]
机构
[1] Chungnam Natl Univ, Dept Adv Organ Mat & Text Syst Engn, Taejon 305764, South Korea
[2] Ewha Womans Univ, Coll Pharm, Seoul 120750, South Korea
关键词
POLYMER MELTS; DEGRADATION; NANOFIBERS; FIBERS;
D O I
10.1155/2013/309048
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Biodegradable poly(L-lactic acid) (PLA) fibrous scaffolds were prepared by electrospinning from a PLA melt containing poly(ethylene glycol) (PEG) as a plasticizer to obtain thinner fibers. The effects of PEG on the melt electrospinning of PLA were examined in terms of the melt viscosity and fiber diameter. Among the parameters, the content of PEG had a more significant effect on the average fiber diameter and its distribution than those of the spinning temperature. Furthermore, nano-/microfibrous silk fibroin (SF)/PLA and PLA/PLA composite scaffolds were fabricated by hybrid electrospinning, which involved a combination of solution electrospinning and melt electrospinning. The SF/PLA (20/80) scaffolds consisted of a randomly oriented structure of PLA microfibers (average fiber diameter = 8.9 mu m) and SF nanofibers (average fiber diameter = 820 nm). The PLA nano-/microfiber (20/80) scaffolds were found to have similar pore parameters to the PLA microfiber scaffolds. The PLA scaffolds were treated with plasma in the presence of either oxygen or ammonia gas to modify the surface of the fibers. This approach of controlling the surface properties and diameter of fibers could be useful in the design and tailoring of novel scaffolds for tissue engineering.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Poly(L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning
    Deng, Xu-Liang
    Sui, Gang
    Zhao, Min-Li
    Chen, Guo-Qiang
    Yang, Xiao-Ping
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2007, 18 (01) : 117 - 130
  • [2] Preparation of poly(L-lactic acid) scaffolds by melt extrusion foaming
    Lee, JR
    Kang, HJ
    POLYMER-KOREA, 2005, 29 (02) : 198 - 203
  • [3] Bioactive poly(L-lactic acid)-chitosan hybrid scaffolds
    Mano, Joao F.
    Hungerford, Graham
    Gomez Ribelles, Jose L.
    MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2008, 28 (08): : 1356 - 1365
  • [4] Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering
    Liu, XH
    Won, YJ
    Ma, PX
    BIOMATERIALS, 2006, 27 (21) : 3980 - 3987
  • [5] Fabrication and degradation of poly(L-lactic acid) scaffolds with wool keratin
    Li, Jiashen
    Li, Yi
    Li, Lin
    Mak, Arthur F. T.
    Ko, Frank
    Qin, Ling
    COMPOSITES PART B-ENGINEERING, 2009, 40 (07) : 664 - 667
  • [6] Fabrication and biocompatibility of cell scaffolds of poly(L-lactic acid) and poly(L-lactic-co-glycolic acid)
    Shi, GX
    Cai, Q
    Wang, CY
    Lu, N
    Wang, SG
    Bei, JZ
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2002, 13 (3-4) : 227 - 232
  • [7] Surface modification of electrospun poly-(L-lactic) acid scaffolds by reactive magnetron sputtering
    Bolbasov, E. N.
    Maryin, P. V.
    Stankevich, K. S.
    Kozelskaya, A. I.
    Shesterikov, E. V.
    Khodyrevskaya, Yu. I.
    Nasonova, M. V.
    Shishkova, D. K.
    Kudryavtseva, Yu. A.
    Anissimov, Y. G.
    Tverdokhlebov, S. I.
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 162 : 43 - 51
  • [8] Modification of poly(L-lactic acid) with L-lactic acid citric acid oligomers
    Jiang, Yan
    Bai, Yun
    Chen, Man
    Yao, Fanglian
    Zhang, Haiyue
    Yao, Kang De
    E-POLYMERS, 2006,
  • [9] Fabrication and characterization of poly (ethylenimine) modified poly (l-lactic acid) nanofibrous scaffolds
    Guo, Rongying
    Chen, Shunyu
    Xiao, Xiufeng
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2019, 30 (16) : 1523 - 1541
  • [10] Poly(L-lactic acid)-polyethylene glycol-poly(L-lactic acid) triblock copolymer: A novel macromolecular plasticizer to enhance the crystallization of poly(L-lactic acid)
    Li, Le
    Cao, Zhi-Qiang
    Bao, Rui-Ying
    Xie, Bang-Hu
    Yang, Ming-Bo
    Yang, Wei
    EUROPEAN POLYMER JOURNAL, 2017, 97 : 272 - 281