Linear matrix inequality approach to local stability analysis of discrete-time Takagi-Sugeno fuzzy systems

被引:19
|
作者
Lee, Dong Hwan [1 ]
Joo, Young Hoon [2 ]
Tak, Myung Hwan [2 ]
机构
[1] Yonsei Univ, Dept Elect & Elect Engn, Seoul 120749, South Korea
[2] Kunsan Natl Univ, Dept Control & Robot Engn, Kunsan 573701, Chonbuk, South Korea
来源
IET CONTROL THEORY AND APPLICATIONS | 2013年 / 7卷 / 09期
关键词
NONQUADRATIC STABILIZATION CONDITIONS; NONLINEAR-SYSTEMS; LYAPUNOV-FUNCTION; MODELS; CRITERION;
D O I
10.1049/iet-cta.2013.0033
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study deals with the problem of local stability analysis and the computation of invariant subsets of the domain of attraction (DA) for discrete-time Takagi-Sugeno fuzzy systems. Based on the fuzzy Lyapunov functions, new sufficient conditions and an iterative scheme are proposed in order to prove the local stability and to estimate the DA. The mean value theorem and polytopic type bounds on the gradient of the membership functions are used to consider the relation between the membership functions at samples k and k + 1. Each step of the iterative procedure consists of linear matrix inequalities (LMIs) or single-parameter minimisation problems subject to LMI constraints, which are solvable via convex optimisations. Finally, examples compare the proposed conditions with existing tests.
引用
收藏
页码:1309 / 1318
页数:10
相关论文
共 50 条
  • [1] Linear matrix inequality approach to local stability analysis of discrete-time Takagi-Sugeno fuzzy systems (vol 7, pg 1309, 2013)
    Lee, D. H.
    Joo, Y. H.
    Tak, M. H.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (18): : 2197 - 2197
  • [2] Stability analysis of discrete-time Takagi-Sugeno fuzzy systems
    Pytelková, R
    Husek, P
    [J]. COMPUTATIONAL SCIENCE-ICCS 2002, PT III, PROCEEDINGS, 2002, 2331 : 604 - 612
  • [3] Exponential stability of discrete-time Takagi-Sugeno fuzzy systems
    Üstoglu, I
    Yesil, E
    Güzelkaya, M
    Eksin, I
    [J]. Soft Computing with Industrial Applications, Vol 17, 2004, 17 : 519 - 524
  • [4] Stability analysis and stabilization of discrete-time switched Takagi-Sugeno fuzzy systems
    Du, Shengli
    Li, Xiaoli
    Sun, Shen
    Li, Xu
    [J]. ISA TRANSACTIONS, 2020, 105 : 24 - 32
  • [5] On the Generalized Local Stability and Local Stabilization Conditions for Discrete-Time Takagi-Sugeno Fuzzy Systems
    Lee, Dong Hwan
    Joo, Young Hoon
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (06) : 1654 - 1668
  • [6] H∞ control for discrete-time Takagi-Sugeno fuzzy systems
    Katayama, H
    Ichikawa, A
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2002, 33 (14) : 1099 - 1107
  • [7] On H∞ Filtering for Discrete-Time Takagi-Sugeno Fuzzy Systems
    Zhang, Hui
    Shi, Yang
    Mehr, Aryan Saadat
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2012, 20 (02) : 396 - 401
  • [8] Extended LMI representatives for stability and stabilization of discrete-time Takagi-Sugeno fuzzy systems
    Zhang, Hui
    Liu, Mingxi
    Shi, Yang
    Sheng, Jie
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2014, 35 (06): : 647 - 655
  • [9] Local Stability Analysis of Continuous-Time Takagi-Sugeno Fuzzy Systems: An LMI Approach
    Lee, Dong Hwan
    [J]. 2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 5625 - 5630
  • [10] Adaptive prediction and control of discrete-time Takagi-Sugeno fuzzy systems
    Qi, Ruiyun
    Tao, Gang
    Tan, Chang
    Yao, Xuelian
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2012, 26 (07) : 560 - 575