Adaptive Neural Admittance Control for Collision Avoidance in Human-Robot Collaborative Tasks

被引:0
|
作者
Yu, Xinbo [1 ]
He, Wei [1 ]
Xue, Chengqian [1 ]
Li, Bin [1 ]
Cheng, Long [2 ,3 ]
Yang, Chenguang [4 ]
机构
[1] Univ Sci & Technol Beijing, Inst Artificial Intelligence, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
[2] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[4] Univ West England, Bristol Robot Lab, Bristol BS16 1QY, Avon, England
基金
北京市自然科学基金; 英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
D O I
10.1109/iros40897.2019.8967720
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposed an adaptive neural admittance control strategy for collision avoidance in human-robot collaborative tasks. In order to ensure that the robot end-effector can avoid collisions with surroundings, robot should be operated compliantly by human within a constrained task space. An impedance model and a soft saturation function are employed to generate a differentiable reference trajectory. Then, adaptive neural network control with position constraint, based on integral barrier Lyapunov function (IBLF), is designed to achieve precise tracking while guaranteeing constrained satisfaction. Utilizing Lyapunov stability principles, we prove that semi-globally uniformly bounded stability is guaranteed for all states of the closed-loop system. At last, the effectiveness of the proposed algorithm is verified on a Baxter robot experimental platform. Collisions with surroundings can be avoided in human-robot collaborative tasks.
引用
收藏
页码:7574 / 7579
页数:6
相关论文
共 50 条
  • [1] The influence of collision avoidance strategies on human-robot collaborative systems
    Boschetti, G.
    Bottin, M.
    Faccio, M.
    Maretto, L.
    Minto, R.
    [J]. IFAC PAPERSONLINE, 2022, 55 (02): : 301 - 306
  • [2] Learning Variable Admittance Control for Human-Robot Collaborative Manipulation
    Yamawaki, Tasuku
    Tran, Liem Duc
    Yashima, Masahito
    [J]. JOURNAL OF ROBOTICS AND MECHATRONICS, 2023, 35 (06) : 1593 - 1603
  • [3] Path Following Control for Human-Robot Collaborative Tasks
    Dubay, Shaundell
    Melek, William
    Nielsen, Christopher
    [J]. 2022 17TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2022, : 931 - 936
  • [4] Sensorless and adaptive admittance control of industrial robot in physical human-robot interaction
    Yao, Bitao
    Zhou, Zude
    Wang, Lihui
    Xu, Wenjun
    Liu, Quan
    Liu, Aiming
    [J]. ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2018, 51 : 158 - 168
  • [5] Online Collision Avoidance for Human-Robot Collaborative Interaction Concerning Safety and Efficiency
    Liu, Guoliang
    He, Haoyang
    Tian, Guohui
    Zhang, Jianhua
    Ji, Ze
    [J]. 2020 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2020, : 1667 - 1672
  • [6] Adaptive Human-Robot Collaboration Control Based on Optimal Admittance Parameters
    Yu X.
    Wu J.
    Xu C.
    Luo H.
    Ou L.
    [J]. Journal of Shanghai Jiaotong University (Science), 2022, 27 (05) : 589 - 601
  • [7] Intent Aware Adaptive Admittance Control for Physical Human-Robot Interaction
    Ranatunga, Isura
    Cremer, Sven
    Popa, Dan O.
    Lewis, Frank L.
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2015, : 5635 - 5640
  • [8] A passivity-based adaptive admittance control strategy for physical human-robot interaction in hands-on tasks
    Bascetta, Luca
    [J]. 2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 2267 - 2272
  • [9] Based on human-like variable admittance control for human-robot collaborative motion
    Wang, Chengyun
    Zhao, Jing
    [J]. ROBOTICA, 2023, 41 (07) : 2155 - 2176
  • [10] Neural Learning Enhanced Variable Admittance Control for Human-Robot Collaboration
    Chen, Xiongjun
    Wang, Ning
    Cheng, Hong
    Yang, Chenguang
    [J]. IEEE ACCESS, 2020, 8 : 25727 - 25737