Malicious Webpage Detection by Semantics-Aware Reasoning

被引:4
|
作者
Lin, Shih-Fen [1 ]
Hou, Yung-Tsung [1 ]
Chen, Chia-Mei [1 ]
Jeng, Bingchiang [1 ]
Laih, Chi-Sung [2 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Informat Management, Kaohsiung 80424, Taiwan
[2] Natl Cheng Kung Univ, Dept Elect Engn, Tainan, Taiwan
关键词
D O I
10.1109/ISDA.2008.290
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The recent evolutional development of dynamic HTML techniques empowers attackers a new and powerful tool to compromise, machines. A malicious DHTML code disguises itself as a normal webpage. The malicious webpage infects the victim when a user browses it. Furthermore, such DHTML code can disguise easily through obfuscation or transformation, which makes detection even harder. Anti-virus software packages commonly use signature-based approaches which might not be able to efficiently identify camouflage malicious HTML code. In this paper, we propose a novel semantics-aware reasoning detection algorithm (SeAR) using the techniques of semantic modeling and memory-based reasoning for malicious webpage detection. SeAR is resilient to code obfuscations and is able to detect malicious webpage correctly. The experiments demonstrate that our detection algorithm can effectively detect variants of malicious HTML code with a low false rate.
引用
收藏
页码:115 / +
页数:2
相关论文
共 50 条
  • [1] Semantics-aware malware detection
    Christodorescu, M
    Jha, S
    Seshia, SA
    Song, D
    Bryant, RE
    [J]. 2005 IEEE SYMPOSIUM ON SECURITY AND PRIVACY, PROCEEDINGS, 2005, : 32 - 46
  • [2] A Malicious Webpage Detection Algorithm Based on Image Semantics
    Li, Xiangjun
    Li, Sifan
    Liu, Shengnan
    Liu, Lingfeng
    He, Daojing
    [J]. TRAITEMENT DU SIGNAL, 2020, 37 (01) : 113 - 118
  • [3] Semantics-aware detection of targeted attacks: a survey
    Luh R.
    Marschalek S.
    Kaiser M.
    Janicke H.
    Schrittwieser S.
    [J]. Journal of Computer Virology and Hacking Techniques, 2017, 13 (1) : 47 - 85
  • [4] Semantics-Aware Active Fault Detection in IoT
    Stamatakis, George J.
    Pappas, Nikolaos
    Fragkiadakis, Alexandros
    Traganitis, Apostolos
    [J]. 2022 20TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT 2022), 2022, : 161 - 168
  • [5] Semantics-Aware Autoencoder
    Bellini, Vito
    Di Noia, Tommaso
    Di Sciascio, Eugenio
    Schiavone, Angelo
    [J]. IEEE ACCESS, 2019, 7 : 166122 - 166137
  • [6] A SEMANTICS-AWARE NORMALIZING FLOW MODEL FOR ANOMALY DETECTION
    Ma, Wei
    Lan, Shiyong
    Huang, Weikang
    Wang, Wenwu
    Yang, Hongyu
    Ma, Yitong
    Ma, Yongjie
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2207 - 2212
  • [7] Semantics-aware perimeter protection
    Cremonini, M
    Damiani, E
    Samarati, P
    [J]. DATA AND APPLICATIONS SECURITY XVII: STATUS AND PROSPECTS, 2004, 142 : 229 - 242
  • [8] Semantics-Aware Trace Analysis
    Hoffman, Kevin
    Eugster, Patrick
    Jagannathan, Suresh
    [J]. PLDI'09 PROCEEDINGS OF THE 2009 ACM SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION, 2009, : 453 - 464
  • [9] Semantics-Aware Trace Analysis
    Hoffman, Kevin
    Eugster, Patrick
    Jagannathan, Suresh
    [J]. ACM SIGPLAN NOTICES, 2009, 44 (06) : 453 - 464
  • [10] Semantics-Aware Active Fault Detection in Status Updating Systems
    Stamatakis, George
    Pappas, Nikolaos
    Fragkiadakis, Alexandros
    Petroulakis, Nikolaos
    Traganitis, Apostolos
    [J]. IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 1182 - 1196