Supervised segmentation framework for evaluation of diffusion tensor imaging indices in skeletal muscle

被引:4
|
作者
Secondulfo, Laura [1 ]
Ogier, Augustin C. [2 ,3 ]
Monte, Jithsa R. [4 ]
Aengevaeren, Vincent L. [5 ]
Bendahan, David [3 ]
Nederveen, Aart J. [4 ]
Strijkers, Gustav J. [1 ]
Hooijmans, Melissa T. [1 ]
机构
[1] Univ Amsterdam, Amsterdam Univ Med Ctr, Dept Biomed Engn & Phys, Amsterdam, Netherlands
[2] Univ Toulon & Var, Aix Marseille Univ, CNRS, LIS, Marseille, France
[3] Aix Marseille Univ, CNRS, CRMBM, Marseille, France
[4] Univ Amsterdam, Amsterdam Univ Med Ctr, Dept Radiol & Nucl Med, Amsterdam, Netherlands
[5] Radboud Univ Nijmegen, Med Ctr, Dept Physiol, Radboud Inst Hlth Sci, Nijmegen, Netherlands
关键词
applications; diffusion tensor imaging (DTI); methods and engineering; muscle; musculoskeletal; post-acquisition processing; quantitation; INDIVIDUAL MUSCLES; THIGH MUSCLE; MRI; FAT; VALIDATION;
D O I
10.1002/nbm.4406
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Diffusion tensor imaging (DTI) is becoming a relevant diagnostic tool to understand muscle disease and map muscle recovery processes following physical activity or after injury. Segmenting all the individual leg muscles, necessary for quantification, is still a time-consuming manual process. The purpose of this study was to evaluate the impact of a supervised semi-automatic segmentation pipeline on the quantification of DTI indices in individual upper leg muscles. Longitudinally acquired MRI datasets (baseline, post-marathon and follow-up) of the upper legs of 11 subjects were used in this study. MR datasets consisted of a DTI and Dixon acquisition. Semi-automatic segmentations for the upper leg muscles were performed using a transversal propagation approach developed by Ogier et al on the out-of-phase Dixon images at baseline. These segmentations were longitudinally propagated for the post-marathon and follow-up time points. Manual segmentations were performed on the water image of the Dixon for each of the time points. Dice similarity coefficients (DSCs) were calculated to compare the manual and semi-automatic segmentations. Bland-Altman and regression analyses were performed, to evaluate the impact of the two segmentation methods on mean diffusivity (MD), fractional anisotropy (FA) and the third eigenvalue (lambda(3)). The average DSC for all analyzed muscles over all time points was 0.92 +/- 0.01, ranging between 0.48 and 0.99. Bland-Altman analysis showed that the 95% limits of agreement for MD, FA and lambda(3)ranged between 0.5% and 3.0% for the transversal propagation and between 0.7% and 3.0% for the longitudinal propagations. Similarly, regression analysis showed good correlation for MD, FA and lambda(3)(r= 0.99,p< 60; 0.0001). In conclusion, the supervised semi-automatic segmentation framework successfully quantified DTI indices in the upper-leg muscles compared with manual segmentation while only requiring manual input of 30% of the slices, resulting in a threefold reduction in segmentation time.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Diffusion tensor imaging in evaluation of human skeletal muscle injury
    Zaraiskaya, Tatiana
    Kumbhare, Dinesh
    Noseworthy, Michael D.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2006, 24 (02) : 402 - 408
  • [2] Evaluation of interrater reliability of different muscle segmentation techniques in diffusion tensor imaging
    Forsting, Johannes
    Rehmann, Robert
    Rohm, Marlena
    Froeling, Martijn
    Schlaffke, Lara
    NMR IN BIOMEDICINE, 2021, 34 (02)
  • [3] Clinical applications of skeletal muscle diffusion tensor imaging
    Martin-Noguerol, Teodoro
    Barousse, Rafael
    Wessell, Daniel E.
    Rossi, Ignacio
    Luna, Antonio
    SKELETAL RADIOLOGY, 2023, 52 (09) : 1639 - 1649
  • [4] Clinical applications of skeletal muscle diffusion tensor imaging
    Teodoro Martín-Noguerol
    Rafael Barousse
    Daniel E. Wessell
    Ignacio Rossi
    Antonio Luna
    Skeletal Radiology, 2023, 52 : 1639 - 1649
  • [5] Fiber type characterization in skeletal muscle by diffusion tensor imaging
    Scheel, Michael
    von Roth, Philipp
    Winkler, Tobias
    Arampatzis, Adamantios
    Prokscha, Torben
    Hamm, Bernd
    Diederichs, Gerd
    NMR IN BIOMEDICINE, 2013, 26 (10) : 1220 - 1224
  • [6] Techniques and applications of skeletal muscle diffusion tensor imaging: A review
    Oudeman, Jos
    Nederveen, Aart J.
    Strijkers, Gustav J.
    Maas, Mario
    Luijten, Peter R.
    Froeling, Martijn
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 43 (04) : 773 - 788
  • [7] Diffusion tensor imaging in biomechanical studies of skeletal muscle function
    Van Donkelaar, CC
    Kretzers, LJG
    Bovendeerd, PHM
    Lataster, LMA
    Nicolay, K
    Janssen, JD
    Drost, MR
    JOURNAL OF ANATOMY, 1999, 194 : 79 - 88
  • [8] Diffusion Tensor Imaging of Skeletal Muscle - Correlation of Fractional Anisotropy to Muscle Power
    Scheel, M.
    Prokscha, T.
    von Roth, P.
    Winkler, T.
    Dietrich, R.
    Bierbaum, S.
    Arampatzis, A.
    Diederichs, G.
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2013, 185 (09): : 857 - 861
  • [9] Semiquantitative Evaluation of Muscle Repair by Diffusion Tensor Imaging in Mice
    Hata, Junichi
    Mizuno, Sakiko
    Haga, Yawara
    Shimoda, Masayuki
    Kanai, Yae
    Chiba, Kazuhiro
    Okano, Hideyuki
    Nakamura, Masaya
    Horiuchi, Keisuke
    JBMR PLUS, 2018, 2 (04) : 227 - 234
  • [10] Determining skeletal muscle architecture with Laplacian simulations: a comparison with diffusion tensor imaging
    Handsfield, Geoffrey G.
    Bolsterlee, Bart
    Inouye, Joshua M.
    Herbert, Robert D.
    Besier, Thor F.
    Fernandez, Justin W.
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2017, 16 (06) : 1845 - 1855