The Cramer-Rao lower bound for bilinear systems

被引:8
|
作者
Zou, QY [1 ]
Lin, ZP
Ober, RJ
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Ctr Signal Proc, Singapore 639798, Singapore
[3] Univ Texas, Sch Elect Engn & Comp Sci, Richardson, TX 75083 USA
[4] Univ Texas, SW Med Ctr, Ctr Immunol, Dallas, TX 75235 USA
基金
美国国家卫生研究院;
关键词
bilinear systems; Cramer-Rao lower bound (CRLB); Fisher information matrix; local identifiability; parameter estimation; surface plasmon resonance experiments; system identification;
D O I
10.1109/TSP.2005.863006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Estimation of the unknown parameters that characterize a bilinear system is of primary importance in many applications. The Cramer-Rao lower bound (CRLB) provides a lower bound on the covariance matrix of any unbiased estimator of unknown parameters. It is widely applied to investigate the limit of the accuracy with which parameters can be estimated from noisy data. Here it is shown that the CRLB for a data set generated by a bilinear system with additive Gaussian measurement noise can be expressed explicitly in terms of the outputs of its derivative system which is also bilinear. A connection between the nonsingularity of the Fisher information matrix and the local identifiability of the unknown parameters is exploited to derive local identifiability conditions; of bilinear systems using the concept of the derivative system. It is shown that for bilinear systems with piecewise constant inputs, the CRLB for uniformly sampled data can be efficiently computed through solving a Lyapunov equation. In addition, a novel method is proposed to derive the asymptotic CRLB when the number of acquired data samples approaches infinity. These theoretical results are illustrated through the simulation of surface plasmon resonance experiments for the determination of the kinetic parameters of protein-protein interactions.
引用
收藏
页码:1666 / 1680
页数:15
相关论文
共 50 条
  • [1] ATTAINMENT OF CRAMER-RAO LOWER BOUND
    JOSHI, VM
    [J]. ANNALS OF STATISTICS, 1976, 4 (05): : 998 - 1002
  • [2] ATTAINMENT OF CRAMER-RAO LOWER BOUND
    WIJSMAN, RA
    [J]. ANNALS OF STATISTICS, 1973, 1 (03): : 538 - 542
  • [3] Cramer-Rao lower bound for parameter estimation in nonlinear systems
    Lin, ZP
    Zou, QY
    Ward, ES
    Ober, RJ
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (12) : 855 - 858
  • [4] THE BAYESIAN CRAMER-RAO LOWER BOUND IN ASTROMETRY
    Mendez, R. A.
    Echeverria, A.
    Silva, J.
    Orchard, M.
    [J]. VII REUNION DE ASTRONOMIA DINAMICA EN LATINOAMERICA (ADELA 2016), 2018, 50 : 23 - 24
  • [5] SEQUENTIAL ESTIMATORS AND THE CRAMER-RAO LOWER BOUND
    SIMONS, G
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1980, 4 (01) : 67 - 74
  • [6] THE BAYESIAN CRAMER-RAO LOWER BOUND IN ASTROMETRY
    Mendez, R. A.
    Echeverria, A.
    Silva, J.
    Orchard, M.
    [J]. XV LATIN AMERICAN REGIONAL IAU MEETING, 2016, 2017, 49 : 52 - 52
  • [7] THE BAYESIAN CRAMER-RAO LOWER BOUND IN PHOTOMETRY
    Espinosa, Sebastian
    Silva, Jorge F.
    Mendez, Rene A.
    Orchard, Marcos
    [J]. VII REUNION DE ASTRONOMIA DINAMICA EN LATINOAMERICA (ADELA 2016), 2018, 50 : 50 - 51
  • [8] The Cramer-Rao lower bound for noisy input-output systems
    Karlsson, E
    Söderström, T
    Stoica, P
    [J]. SIGNAL PROCESSING, 2000, 80 (11) : 2421 - 2447
  • [9] On the Cramer-Rao lower Bound and the performance of synchronizers for (turbo) encoded systems
    Noels, N
    Steendam, H
    Moeneclaey, M
    [J]. 2004 IEEE 5TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, 2004, : 69 - 73
  • [10] Cramer-Rao Lower Bound Analysis for OTFS and OFDM Modulation Systems
    Wang, Bowen
    Zhu, Jianchi
    She, Xiaoming
    Chen, Peng
    [J]. 2023 26TH INTERNATIONAL SYMPOSIUM ON WIRELESS PERSONAL MULTIMEDIA COMMUNICATIONS, WPMC, 2023, : 107 - 112