One-step robust deep learning phase unwrapping

被引:280
|
作者
Wang, Kaiqiang [1 ]
Li, Ying [1 ]
Qian Kemao [2 ]
Di, Jianglei [1 ]
Zhao, Jianlin [1 ]
机构
[1] Northwestern Polytech Univ, Sch Sci, MOE Key Lab Mat Phys & Chem Extraordinary Condit, Shaanxi Key Lab Opt Informat Technol, Xian 710072, Shaanxi, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金;
关键词
CONVOLUTIONAL NEURAL-NETWORK; TRANSPORT; MICROSCOPY; RECONSTRUCTION; SCATTERING; ALGORITHM;
D O I
10.1364/OE.27.015100
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Phase unwrapping is an important but challenging issue in phase measurement. Ey:en with the research efforts of a few decades, unfortunately, the problem remains not Well solved, especially When heavy noise and abasing (undersampling) are present. We propose a database generation method for phase-type objects and a one-step deep learning phase unwrapping method. With a trained deep neural network, the unseen phase fields of living mouse osteoblasts and dynamic candle flame are successfully UnWrapped, demonstrating that the complicated nonlinear phase unwrapping task can be directly fulfilled in one step by a single deep neural network. Excellent anti-noise and anti-aliasing performances outperforming classical methods are highlighted in this paper. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:15100 / 15115
页数:16
相关论文
共 50 条
  • [1] A DETAIL-PRESERVATION METHOD OF DEEP LEARNING ONE-STEP PHASE UNWRAPPING
    Ye, Xin
    Qian, Jiang
    Wang, Yong
    Yu, Hanwen
    Wang, Lu
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1115 - 1118
  • [2] Rapid and robust two-dimensional phase unwrapping via deep learning
    Zhang, Teng
    Jiang, Shaowei
    Zhao, Zixin
    Dixit, Krishna
    Zhou, Xiaofei
    Hou, Wa
    Zhang, Yongbing
    Yan, Chenggang
    [J]. OPTICS EXPRESS, 2019, 27 (16) : 23173 - 23185
  • [3] A Robust One-Step Approach to Ynamides
    Tu, Yongliang
    Zeng, Xianzhu
    Wang, Hui
    Zhao, Junfeng
    [J]. ORGANIC LETTERS, 2018, 20 (01) : 280 - 283
  • [4] The PHU-NET: A robust phase unwrapping method for MRI based on deep learning
    Zhou, Hongyu
    Cheng, Chuanli
    Peng, Hao
    Liang, Dong
    Liu, Xin
    Zheng, Hairong
    Zou, Chao
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2021, 86 (06) : 3321 - 3333
  • [5] A novel deep learning approach for one-step conformal prediction approximation
    Meister, Julia A.
    Nguyen, Khuong An
    Kapetanakis, Stelios
    Luo, Zhiyuan
    [J]. ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2023,
  • [6] One-Step Three-Dimensional Phase Unwrapping Approach Based on Small Baseline Subset Interferograms
    Esch, Christina
    Koehler, Joel
    Gutjahr, Karlheinz
    Schuh, Wolf-Dieter
    [J]. REMOTE SENSING, 2020, 12 (09)
  • [7] Temporal phase unwrapping using deep learning
    Yin, Wei
    Chen, Qian
    Feng, Shijie
    Tao, Tianyang
    Huang, Lei
    Trusiak, Maciej
    Asundi, Anand
    Zuo, Chao
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [8] Temporal phase unwrapping using deep learning
    Wei Yin
    Qian Chen
    Shijie Feng
    Tianyang Tao
    Lei Huang
    Maciej Trusiak
    Anand Asundi
    Chao Zuo
    [J]. Scientific Reports, 9
  • [9] New one-step model of breast tumor locating based on deep learning
    Tao, Chao
    Chen, Ke
    Han, Lin
    Peng, Yulan
    Li, Cheng
    Hua, Zhan
    Lin, Jiangli
    [J]. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2019, 27 (05) : 839 - 856
  • [10] Spectral rotation for deep one-step clustering
    Zhu, Xiaofeng
    Zhu, Yonghua
    Zheng, Wei
    [J]. PATTERN RECOGNITION, 2020, 105