Quantum Monte Carlo simulation in the canonical ensemble at finite temperature

被引:27
|
作者
Van Houcke, K. [1 ]
Rombouts, S. M. A. [1 ]
Pollet, L. [1 ]
机构
[1] Univ Ghent, Vakgrp Subatom & Stralingsfys, B-9000 Ghent, Belgium
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 05期
关键词
D O I
10.1103/PhysRevE.73.056703
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A quantum Monte Carlo method with a nonlocal update scheme is presented. The method is based on a path-integral decomposition and a worm operator which is local in imaginary time. It generates states with a fixed number of particles and respects other exact symmetries. Observables like the equal-time Green's function can be evaluated in an efficient way. To demonstrate the versatility of the method, results for the one-dimensional Bose-Hubbard model and a nuclear pairing model are presented. Within the context of the Bose-Hubbard model the efficiency of the algorithm is discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Finite temperature auxiliary field quantum Monte Carlo in the canonical ensemble
    Shen, Tong
    Liu, Yuan
    Yu, Yang
    Rubenstein, Brenda M.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (20):
  • [2] Finite temperature auxiliary field quantum Monte Carlo in the canonical ensemble
    Shen, Tong
    Liu, Yuan
    Yu, Yang
    Rubenstein, Brenda M.
    [J]. Journal of Chemical Physics, 2020, 153 (20):
  • [3] MONTE-CARLO SIMULATION OF THE GRAND CANONICAL ENSEMBLE
    YAO, J
    GREENKORN, RA
    CHAO, KC
    [J]. MOLECULAR PHYSICS, 1982, 46 (03) : 587 - 594
  • [4] Loop updates for quantum Monte Carlo simulations in the canonical ensemble
    Rombouts, S. M. A.
    Van Houcke, K.
    Pollet, L.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (18)
  • [5] GRAND CANONICAL ENSEMBLE MONTE CARLO SIMULATION ON A TRANSPUTER ARRAY
    Zara, Stephen J.
    Nicholson, David
    [J]. MOLECULAR SIMULATION, 1990, 5 (3-4) : 245 - 261
  • [6] Temperature and density extrapolations in canonical ensemble Monte Carlo simulations
    Ferreira, AL
    Barroso, MA
    [J]. PHYSICAL REVIEW E, 2000, 61 (02) : 1195 - 1198
  • [7] Canonical and grand canonical ensemble expectation values from quantum Monte Carlo simulations
    Sedgewick, RD
    Scalapino, DJ
    Sugar, RL
    Capriotti, L
    [J]. PHYSICAL REVIEW B, 2003, 68 (04)
  • [8] Parallel Monte Carlo simulation in the canonical ensemble on the graphics processing unit
    Hailat, Eyad
    Russo, Vincent
    Rushaidat, Kamel
    Mick, Jason
    Schwiebert, Loren
    Potoff, Jeffrey
    [J]. INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2014, 29 (04) : 379 - 400
  • [9] MONTE-CARLO SIMULATION OF MULTICOMPONENT EQUILIBRIA IN A SEMIGRAND CANONICAL ENSEMBLE
    KOFKE, DA
    GLANDT, ED
    [J]. MOLECULAR PHYSICS, 1988, 64 (06) : 1105 - 1131
  • [10] Expanded grand canonical and Gibbs ensemble Monte Carlo simulation of polymers
    Escobedo, FA
    dePablo, JJ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (10): : 4391 - 4394