Estimates for the norms of products of sines and cosines

被引:5
|
作者
Bell, Jordan [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 1A1, Canada
关键词
Trigonometric polynomials; Pentagonal number theorem; q-series; Integer partitions; Catalan's constant; PARTITION; POLYNOMIALS; ZEROS;
D O I
10.1016/j.jmaa.2013.04.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove asymptotic formulas for the L-p norms of P-n(theta) = Pi(n)(k=1)(1 - e(ik theta)) and Q(n)(theta) = Pi(n)(k=1) (1 + e(ik theta)). These products can be expressed using Pi(n)(k=1) sin(k theta/2) and Pi(n)(k=1) cos(k theta/2) respectively. We prove an estimate for P-n at a point near where its maximum occurs. Finally, we give an asymptotic formula for the maximum of the Fourier coefficients of Q(n). (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:530 / 545
页数:16
相关论文
共 50 条