Kinetic-magnetic energy exchanges in rotating magnetohydrodynamic turbulence

被引:4
|
作者
Baklouti, F. S. [1 ]
Khlifi, A. [1 ]
Salhi, A. [1 ,2 ]
Godeferd, F. [2 ]
Cambon, C. [2 ]
Lehner, T. [3 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Dept Phys, Tunis, Tunisia
[2] Univ Lyon, Lab Mecan Fluides & Acoust, UMR 5509, Ecole Cent Lyon,CNRS,UCBL, Ecully, France
[3] Observ Paris, LUTH, UMR 8102 CNRS, Meudon, France
来源
JOURNAL OF TURBULENCE | 2019年 / 20卷 / 04期
关键词
Direct numerical simulations; homogeneous rotating magnetohydrodynamic turbulence; kinetic-magnetic energy exchanges; inertial waves; Alfven waves; REYNOLDS-NUMBER; ANISOTROPY; INSTABILITY; CASCADES; INVERSE; FLUID; DECAY; MODEL;
D O I
10.1080/14685248.2019.1623897
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We use direct numerical simulations to study the dynamics of incompressible homogeneous turbulence subjected to a uniform magnetic field in a rotating frame with rotation vector . We consider two cases: and . The initial state is homogeneous isotropic hydrodynamic turbulence with Reynolds number The magnetic Prandtl number and the Elsasser number , 0.9 or 2. For both the cases and the total energy decays as for and 0.9, and as for . In the spectral range 2 k < 20, the kinetic energy spectrum scales as where p increases with time (). This scaling is similar to that observed in quasi-static MHD. The two rotating MHD flow cases differ mainly in how kinetic and magnetic fluctuations exchange energy, with a mechanism mostly driven by the dynamics of the spectral buffer layer around . At the inertial and Alfven waves frequencies vanish when , but only the inertial waves frequency vanishes when . When , rotation results in an increased reduction of magnetic fluctuations generation. In terms of anisotropy, we show that the elongated structures occurring in rapidly non-magnetised rotating flows are distorted or inhibited for , and weakened for Omega parallel to B.
引用
收藏
页码:263 / 284
页数:22
相关论文
共 50 条
  • [1] Decoupled Cascades of Kinetic and Magnetic Energy in Magnetohydrodynamic Turbulence
    Bian, Xin
    Aluie, Hussein
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (13)
  • [2] Rotating magnetohydrodynamic turbulence
    Bell, N. K.
    Nazarenko, S., V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (44)
  • [3] Nonlinear Transformations of the Kinetic and Magnetic Energies in Rotating Magnetohydrodynamic Turbulent Flows
    Sirazov, R. A.
    Petrosyan, A. S.
    [J]. JETP LETTERS, 2019, 110 (05) : 329 - 335
  • [4] Nonlinear Transformations of the Kinetic and Magnetic Energies in Rotating Magnetohydrodynamic Turbulent Flows
    R. A. Sirazov
    A. S. Petrosyan
    [J]. JETP Letters, 2019, 110 : 329 - 335
  • [5] Cascades and dissipation ratio in rotating magnetohydrodynamic turbulence at low magnetic Prandtl number
    Plunian, Franck
    Stepanov, Rodion
    [J]. PHYSICAL REVIEW E, 2010, 82 (04):
  • [6] Turbulence kinetic energy exchanges in flows with highly variable fluid properties
    Dupuy, Dorian
    Toutant, Adrien
    Bataille, Francoise
    [J]. JOURNAL OF FLUID MECHANICS, 2018, 834 : 5 - 54
  • [7] Collisionless Reconnection in Magnetohydrodynamic and Kinetic Turbulence
    Loureiro, Nuno F.
    Boldyrev, Stanislav
    [J]. ASTROPHYSICAL JOURNAL, 2017, 850 (02):
  • [8] RESIDUAL ENERGY IN MAGNETOHYDRODYNAMIC TURBULENCE
    Wang, Yuxuan
    Boldyrev, Stanislav
    Perez, Jean Carlos
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2011, 740 (02)
  • [9] Kinetic theory of instabilities responsible for magnetic turbulence in laboratory rotating plasma
    Mikhailovskii, A. B.
    Lominadze, J. G.
    Churikov, A. P.
    Pustovitov, V. D.
    Erokhin, N. N.
    Konovalov, S. V.
    [J]. PHYSICS LETTERS A, 2008, 372 (21) : 3846 - 3851
  • [10] Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence
    Makwana, K. D.
    Zhdankin, V.
    Li, H.
    Daughton, W.
    Cattaneo, F.
    [J]. PHYSICS OF PLASMAS, 2015, 22 (04)