Lp estimates for multilinear convolution operators defined with spherical measure

被引:2
|
作者
Shrivastava, Saurabh [1 ]
Shuin, Kalachand [1 ]
机构
[1] Indian Inst Sci Educ & Res Bhopal, Dept Math, Bhopal 462066, India
关键词
42A85; 42B15 (primary); 42B25 (secondary);
D O I
10.1112/blms.12483
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let sigma = (sigma(1),sigma(2), ..., sigma(n)) is an element of Sn-1 and da denote the normalized Lebesgue measure on Sn-1, n >= 2. For functions f(1), f(2), ..., f(n) defined on R, consider the multilinear operator given by T(f(1), f(2), ..., f(n))(x) = integral(Sn-1) Pi(n)(j=1) f(j)(x-sigma(j))d sigma, x is an element of R. In this paper, we obtain necessary and sufficient conditions on exponents p(1), p(2), ..., p(n) and r for which the operator T is bounded from Pi(n)(j=1) L-pj(R) -> L-r(R), where 1 <= p(j), r <= infinity, j=1, 2, ..., n. This generalizes the results obtained in (Bak and Shim, J. Funct. Anal. 157 (1998) 534-553; Oberlin, Trans. Amer. Math. Soc. 310 (1988) 821-835).
引用
下载
收藏
页码:1045 / 1060
页数:16
相关论文
共 50 条