Control scheme formulation for a parabolic trough collector using inverse artificial neural networks and particle swarm optimization

被引:8
|
作者
Cervantes-Bobadilla, M. [1 ]
Hernandez-Perez, J. A. [1 ]
Juarez-Romero, D. [1 ]
Bassam, A. [2 ]
Garcia-Morales, J. [3 ]
Huicochea, A. [1 ]
Jaramillo, O. A. [4 ]
机构
[1] UAEM, Ctr Invest Ingn & Ciencias Aplicadas CIICAp IICBA, Av Univ 1001, Cuernavaca 62209, Morelos, Mexico
[2] Univ Autonoma Yucatan, Ind Contaminantes, Engn Fac, AP 150, Merida, Mexico
[3] Tecnol Nacl Mexico, CENIDET, Int Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[4] Univ Nacl Autonoma Mexico, Inst Energias Renovables, Privada Xochicalco S-N, Temixco 62580, Morelos, Mexico
关键词
Temperature control; Artificial neural networks; Parabolic trough collector; ANNi; Particle swarm optimization;
D O I
10.1007/s40430-021-02862-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This work shows the results of a new nonlinear control approach for the water outlet temperature control in a parabolic trough collector (PTC). The controller is based on an inverse artificial neural network (ANNi) and the particle swarm optimization (PSO) algorithm. This proposed method is capable of operating at different system reference points due to the ANNi-PSO combination. The ANNi was built from a feedforward ANN with six inputs (rim angle, input temperature, ambient temperature, wind velocity, solar radiation, and input water flow) and one output (outlet water temperature). The ANNi purpose is to obtain some of the ANN input variables considering the desired outlet temperature. In this specific case, the interest variable for the ANNi is the PTC input water flow. To guarantee the optimal water flow supplied to the PTC, the ANNi is solved by the PSO. These control systems are complicated because the environmental conditions are not manipulable (wind speed, solar radiation, ambient temperature) and disturbances. Simulations were carried out considering cloudy days, intense wind speeds, and very low solar radiation to verify the proposed control performance. The control strategy results were satisfactory. The tests were performed for abrupt and smooth reference changes. The results showed that, in some cases, the control reaches saturation due to the climatic conditions to which the PTC is exposed.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Control scheme formulation for a parabolic trough collector using inverse artificial neural networks and particle swarm optimization
    M. Cervantes-Bobadilla
    J. A. Hernández-Pérez
    D. Juárez-Romero
    A. Bassam
    J. García-Morales
    A. Huicochea
    O. A. Jaramillo
    [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43
  • [2] Optimization operation of a parabolic trough collector using artificial neural network
    May Tzuc, O.
    Bassam, A.
    Escalante Soberanis, M. A.
    Vazquez Caamal, M.
    [J]. 2016 XVI INTERNATIONAL CONGRESS OF THE MEXICAN HYDROGEN SOCIETY (CSMH), 2016,
  • [3] Geometric optimization on optical performance of parabolic trough solar collector systems using particle swarm optimization algorithm
    Cheng, Ze-Dong
    He, Ya-Ling
    Du, Bao-Cun
    Wang, Kun
    Liang, Qi
    [J]. APPLIED ENERGY, 2015, 148 : 282 - 293
  • [4] Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms
    Garro, Beatriz A.
    Vazquez, Roberto A.
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2015, 2015
  • [5] Modeling and optimization of a solar parabolic trough concentrator system using inverse artificial neural network
    May Tzuc, O.
    Bassam, A.
    Escalante Soberanis, M. A.
    Venegas-Reyes, E.
    Jaramillo, O. A.
    Ricalde, Luis J.
    Ordonez, Eduardo E.
    El Hamzaoui, Y.
    [J]. JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2017, 9 (01)
  • [6] Design of Artificial Neural Networks using a Modified Particle Swarm Optimization Algorithm
    Garro, Beatriz A.
    Sossa, Humberto
    Vazquez, Roberto A.
    [J]. IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 2363 - 2370
  • [7] Adaptive Robust Motion Control of Quadrotor Systems Using Artificial Neural Networks and Particle Swarm Optimization
    Yanez-Badillo, Hugo
    Beltran-Carbajal, Francisco
    Tapia-Olvera, Ruben
    Favela-Contreras, Antonio
    Sotelo, Carlos
    Sotelo, David
    [J]. MATHEMATICS, 2021, 9 (19)
  • [8] A New Approach for the Optimization of Biowaste Composting Using Artificial Neural Networks and Particle Swarm Optimization
    Soto-Paz, Jonathan
    Alfonso-Morales, Wilfredo
    Caicedo-Bravo, Eduardo
    Oviedo-Ocana, Edgar Ricardo
    Torres-Lozada, Patricia
    Manyoma, Pablo Cesar
    Sanchez, Antoni
    Komilis, Dimitrios
    [J]. WASTE AND BIOMASS VALORIZATION, 2020, 11 (08) : 3937 - 3951
  • [9] A New Approach for the Optimization of Biowaste Composting Using Artificial Neural Networks and Particle Swarm Optimization
    Jonathan Soto-Paz
    Wilfredo Alfonso-Morales
    Eduardo Caicedo-Bravo
    Edgar Ricardo Oviedo-Ocaña
    Patricia Torres-Lozada
    Pablo Cesar Manyoma
    Antoni Sanchez
    Dimitrios Komilis
    [J]. Waste and Biomass Valorization, 2020, 11 : 3937 - 3951
  • [10] A Hybrid of Artificial Neural Networks and Particle Swarm Optimization Algorithm for Inverse Modeling of Leakage in Earth Dams
    VaeziNejad, SeyedMahmood
    Marandi, SeyedMorteza
    Salajegheh, Eysa
    [J]. CIVIL ENGINEERING JOURNAL-TEHRAN, 2019, 5 (09): : 2041 - 2057