A Fixed Point Theorem and an Application for the Cauchy Problem in the Scale of Banach Spaces

被引:0
|
作者
Vo Viet Tri [1 ]
Karapinar, Erdal [1 ,2 ,3 ]
机构
[1] Thu Dau Mot Univ, Div Appl Math, Thu Dau Mot City, Binh Duong Prov, Vietnam
[2] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
关键词
cone metric spaces; cone normed spaces; fixed point; scale of Banach spaces;
D O I
10.2298/FIL2013387T
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main aim of this paper is to prove the existence of the fixed point of the sum of two operators in setting of the cone-normed spaces with the values of cone-norm belonging to an ordered locally convex space. We apply this result to prove the existence of global solution of the Cauchy problem with perturbation of the form {x'(t) = f[t, x(t)] + g[t, x(t)], t is an element of[0,infinity), x(0) = x(0)is an element of F-1, in a scale of Banach spaces f(F-s; parallel to center dot parallel to(s)) : s is an element of(0, 1]}.
引用
收藏
页码:4387 / 4398
页数:12
相关论文
共 50 条