Stability and dynamics of a fractional order Leslie-Gower prey-predator model

被引:71
|
作者
Ghaziani, R. Khoshsiar [1 ]
Alidousti, J. [1 ]
Eshkaftaki, A. Bayati [2 ]
机构
[1] Shahrekord Univ, Dept Appl Math & Comp Sci, POB 115, Shahrekord, Iran
[2] Shahrekord Univ, Dept Pure Math, POB 115, Shahrekord, Iran
关键词
Fractional prey-predator model; Stability of equilibrium; Dynamical behavior; Limit cycle; II SCHEMES;
D O I
10.1016/j.apm.2015.09.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we introduce a fractional order Leslie-Gower prey-predator model, which describes interaction between two populations of prey and predator. We determine stability and dynamical behaviors of the equilibria of this system. The dynamical behaviors consist of quasi periodic and limit cycles. Further by numerical solution of the fractional system and numerical simulations, we reveal more dynamical behaviors of the model. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:2075 / 2086
页数:12
相关论文
共 50 条
  • [1] A MODIFIED LESLIE-GOWER FRACTIONAL ORDER PREY-PREDATOR INTERACTION MODEL INCORPORATING THE EFFECT OF FEAR ON PREY
    Mondal, Narayan
    Barman, Dipesh
    Roy, Jyotirmoy
    Alam, Shariful
    Sajid, Mohammad
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (01): : 198 - 232
  • [2] Dynamics in diffusive Leslie-Gower prey-predator model with weak diffusion
    Wu, Xiao
    Ni, Mingkang
    [J]. NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2022, 27 (06): : 1168 - 1188
  • [3] DYNAMIC ANALYSIS AND OPTIMAL CONTROL OF A FRACTIONAL ORDER SINGULAR LESLIE-GOWER PREY-PREDATOR MODEL
    马琳洁
    刘斌
    [J]. Acta Mathematica Scientia, 2020, 40 (05) : 1525 - 1552
  • [4] Dynamic Analysis and Optimal Control of a Fractional Order Singular Leslie-Gower Prey-Predator Model
    Linjie Ma
    Bin Liu
    [J]. Acta Mathematica Scientia, 2020, 40 : 1525 - 1552
  • [5] Stabilization of Modified Leslie-Gower Prey-Predator Model
    Singh A.
    Gakkhar S.
    [J]. Differential Equations and Dynamical Systems, 2014, 22 (3) : 239 - 249
  • [6] Dynamic Analysis and Optimal Control of a Fractional Order Singular Leslie-Gower Prey-Predator Model
    Ma, Linjie
    Liu, Bin
    [J]. ACTA MATHEMATICA SCIENTIA, 2020, 40 (05) : 1525 - 1552
  • [7] Travelling Waves in Diffusive Leslie-Gower Prey-Predator Model
    Wu, Xiao
    Ni, Mingkang
    [J]. DIFFERENTIAL EQUATIONS, 2021, 57 (12) : 1570 - 1578
  • [8] Complex dynamics of a discrete fractional-order Leslie-Gower predator-prey model
    Singh, Anuraj
    Elsadany, Abdelalim A.
    Elsonbaty, Amr
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (11) : 3992 - 4007
  • [9] Identifying weak focus of order 3 in a Leslie-Gower prey-predator model with prey harvesting
    Su, Juan
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [10] Dynamics and patterns of a diffusive Leslie-Gower prey-predator model with strong Allee effect in prey
    Ni, Wenjie
    Wang, Mingxin
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (07) : 4244 - 4274