On estimation and influence diagnostics for the Grubbs' model under heavy-tailed distributions

被引:21
|
作者
Osorio, Felipe [1 ]
Paula, Gilberto A. [2 ]
Galea, Manuel [1 ]
机构
[1] Univ Valparaiso, CIMFAV, Dept Estadist, Valparaiso 5030, Chile
[2] Univ Sao Paulo, Inst Matemat & Estatist, BR-05508 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
LINEAR STRUCTURAL RELATIONSHIPS; COMPARATIVE CALIBRATION MODELS; MIXED-EFFECTS MODELS; LOCAL INFLUENCE; INCOMPLETE-DATA; MAXIMUM-LIKELIHOOD; MEASURING DEVICES; SCALE MIXTURES; T-DISTRIBUTION; EM ALGORITHM;
D O I
10.1016/j.csda.2008.10.034
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Grubbs' measurement model is frequently used to compare several measuring devices. It is common to assume that the random terms have a normal distribution. However, such assumption makes the inference vulnerable to outlying observations, whereas scale mixtures of normal distributions have been an interesting alternative to produce robust estimates, keeping the elegancy and simplicity of the maximum likelihood theory. The aim of this paper is to develop an EM-type algorithm for the parameter estimation, and to use the local influence method to assess the robustness aspects of these parameter estimates under some usual perturbation schemes, In order to identify outliers and to criticize the model building we use the local influence procedure in a Study to compare the precision of several thermocouples. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1249 / 1263
页数:15
相关论文
共 50 条
  • [1] Influence diagnostics for Grubbs’s model with asymmetric heavy-tailed distributions
    Camila B. Zeller
    Victor H. Lachos
    Filidor Vilca Labra
    [J]. Statistical Papers, 2014, 55 : 671 - 690
  • [2] Influence diagnostics for Grubbs's model with asymmetric heavy-tailed distributions
    Zeller, Camila B.
    Lachos, Victor H.
    Labra, Filidor Vilca
    [J]. STATISTICAL PAPERS, 2014, 55 (03) : 671 - 690
  • [3] On estimation of a heteroscedastic measurement error model under heavy-tailed distributions
    Cao, Chun-Zheng
    Lin, Jin-Guan
    Zhu, Xiao-Xin
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (02) : 438 - 448
  • [4] On Hurst exponent estimation under heavy-tailed distributions
    Barunik, Jozef
    Kristoufek, Ladislav
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (18) : 3844 - 3855
  • [5] Mean Estimation and Regression Under Heavy-Tailed Distributions: A Survey
    Gábor Lugosi
    Shahar Mendelson
    [J]. Foundations of Computational Mathematics, 2019, 19 : 1145 - 1190
  • [6] Mean Estimation and Regression Under Heavy-Tailed Distributions: A Survey
    Lugosi, Gabor
    Mendelson, Shahar
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2019, 19 (05) : 1145 - 1190
  • [7] On estimation and local influence analysis for measurement errors models under heavy-tailed distributions
    Lachos, V. H.
    Angolini, T.
    Abanto-Valle, C. A.
    [J]. STATISTICAL PAPERS, 2011, 52 (03) : 567 - 590
  • [8] On estimation and local influence analysis for measurement errors models under heavy-tailed distributions
    V. H. Lachos
    T. Angolini
    C. A. Abanto-Valle
    [J]. Statistical Papers, 2011, 52 : 567 - 590
  • [9] On diagnostics in multivariate measurement error models under asymmetric heavy-tailed distributions
    Zeller, Camila B.
    Carvalho, Rignaldo R.
    Lachos, Victor H.
    [J]. STATISTICAL PAPERS, 2012, 53 (03) : 665 - 683
  • [10] High Quantiles of Heavy-Tailed Distributions: Their Estimation
    N. M. Markovich
    [J]. Automation and Remote Control, 2002, 63 : 1263 - 1278