Morrey-Campanato estimates for Helmholtz equations

被引:74
|
作者
Perthame, B
Vega, L
机构
[1] Ecole Normale Super, DMI, F-75230 Paris, France
[2] Univ Basque Country, E-48080 Bilbao, Spain
关键词
D O I
10.1006/jfan.1999.3391
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive uniform weighted L-2 and Morrey-Campanato type estimates for Helmholtz equations in a medium with a variable index which is not necessarily constant at infinity. Our technique is based on a multiplier method with appropriate weights which generalize those of Morawetz for the wave equation. We also extend our method to the wave equation. (C) 1999 Academic Press.
引用
收藏
页码:340 / 355
页数:16
相关论文
共 50 条
  • [1] Morrey-Campanato estimates for Helmholtz equations with two unbounded media
    Fouassier, E
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 : 767 - 776
  • [2] BMO and Morrey-Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations
    Lv, Guangying
    Gao, Hongjun
    Wei, Jinlong
    Wu, Jiang-Lun
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (05) : 2666 - 2717
  • [3] The Navier-Stokes equations in the critical Morrey-Campanato space
    Lemarie-Rieusset, Pierre Gilles
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2007, 23 (03) : 897 - 930
  • [4] A characterization of the Morrey-Campanato spaces
    Deng, DG
    Duong, XT
    Yan, LX
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2005, 250 (03) : 641 - 655
  • [5] A characterization of the Morrey-Campanato spaces
    Donggao Deng
    Xuan Thinh Duong
    Lixin Yan
    [J]. Mathematische Zeitschrift, 2005, 250 : 641 - 655
  • [6] ELEMENTARY CHARACTERIZATIONS OF THE MORREY-CAMPANATO SPACES
    JANSON, S
    TAIBLESON, M
    WEISS, G
    [J]. LECTURE NOTES IN MATHEMATICS, 1983, 992 : 101 - 114
  • [7] Integral operators on B σ -Morrey-Campanato spaces
    Komori-Furuya, Yasuo
    Matsuoka, Katsuo
    Nakai, Eiichi
    Sawano, Yoshihiro
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (01): : 1 - 32
  • [8] Some characterizations for weighted Morrey-Campanato spaces
    Tang, Lin
    [J]. MATHEMATISCHE NACHRICHTEN, 2011, 284 (8-9) : 1185 - 1198
  • [9] Non-trapping magnetic fields and Morrey-Campanato estimates for Schrodinger operators
    Fanelli, Luca
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) : 1 - 14
  • [10] Strichartz inequalities with weights in Morrey-Campanato classes
    J. A. Barceló
    J. M. Bennett
    A. Carbery
    A. Ruiz
    M. C. Vilela
    [J]. Collectanea mathematica, 2010, 61 : 49 - 56