The Asymptotic Stability of the Generalized 3D Navier-Stokes Equations

被引:0
|
作者
Wang, Wen-Juan [1 ]
Jia, Yan [1 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
关键词
FINITE-DIFFERENCE METHOD; LARGE PERTURBATION; WEAK SOLUTIONS; STANDING-WAVE; BEHAVIOR; REGULARITY; SIMULATION;
D O I
10.1155/2013/321427
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the stability issue of the generalized 3D Navier-Stokes equations. It is shown that if the weak solution u of the Navier-Stokes equations lies in the regular class Vu epsilon L-p (0,infinity;B-q,infinity(0)(R-3)), (2 alpha/p) + (3/q) = 2 alpha, 2 < q < infinity, 0 < alpha < 1, then every weak solution V(x,t) of the perturbed system converges asymptotically to u(x,t) as parallel to v(t)-u(t)parallel to(L2)-> 0, t ->infinity.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Asymptotic stability for the 3D Navier-Stokes equations
    Zhou, Y
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (1-3) : 323 - 333
  • [2] Asymptotic stability of 3D Navier-Stokes equations with damping
    Yang, Rong
    Yang, Xin-Guang
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 116 (116)
  • [3] Asymptotic stability for the Navier-Stokes equations
    Fan, Jishan
    Ozawa, Tohru
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (02) : 379 - 389
  • [4] Asymptotic stability for the Navier-Stokes equations
    Jishan Fan
    Tohru Ozawa
    [J]. Journal of Evolution Equations, 2008, 8 : 379 - 389
  • [5] Asymptotic behavior of the 3D incompressible Navier-Stokes equations with damping
    Peng, Fuxian
    Jin, Xueting
    Yu, Huan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 244
  • [6] Energy Equality of the 3D Navier-Stokes Equations and Generalized Newtonian Equations
    Wang, Yanqing
    Mei, Xue
    Huang, Yike
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (03)
  • [7] Asymptotic stability for the Navier-Stokes equations in Ln
    Zhou, Yong
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (02): : 191 - 204
  • [8] Some regularity criteria for the 3D generalized Navier-Stokes equations
    Kim, Jae-Myoung
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):
  • [9] Averaging principle for stochastic 3D generalized Navier-Stokes equations
    Liu, Hui
    Lin, Lin
    Shi, Yangyang
    [J]. STOCHASTICS AND DYNAMICS, 2024, 24 (01)
  • [10] The 3D Navier-Stokes equations seen as a perturbation of the 2D Navier-Stokes equations
    Iftimie, D
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (03): : 271 - 274