Alkali doping of graphene: The crucial role of high-temperature annealing

被引:11
|
作者
Khademi, A. [1 ,2 ]
Sajadi, E. [1 ,2 ]
Dosanjh, P. [1 ,2 ]
Bonn, D. A. [1 ,2 ]
Folk, J. A. [1 ,2 ]
Stoehr, A. [3 ]
Starke, U. [3 ]
Forti, S. [3 ,4 ]
机构
[1] Univ British Columbia, Stewart Blusson Quantum Matter Inst, Vancouver, BC V6T 1Z4, Canada
[2] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[3] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
[4] IIT NEST, Ctr Nanotechnol Innovat, Piazza San Silvestro 12, I-56127 Pisa, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
EPITAXIAL GRAPHENE; SUPERCONDUCTIVITY; LI; WATER; SIC(0001); GRAPHITE; H2O;
D O I
10.1103/PhysRevB.94.201405
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The doping efficiency of lithium deposited at cryogenic temperatures on epitaxial and chemical vapor deposition monolayer graphene has been investigated under ultrahigh-vacuum conditions. Change of charge-carrier density was monitored by gate voltage shift of the Dirac point and by Hall measurements in low and high doping regimes. It was found that preannealing the graphene greatly enhanced the maximum levels of doping that could be achieved: doping saturated at Delta n = 2 x 10(13) e(-)/cm(2) without annealing, independent of sample type or previous processing; after a 900 K anneal, the saturated doping rose one order of magnitude to Delta n = 2 x 10(14) e(-)/cm(2).
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Effects of high-temperature annealing on tribological properties of graphene
    Feng, Xin
    Li, Lingling
    Wang, Yongkang
    Wei, Zhiyong
    [J]. Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2021, 51 (01): : 115 - 120
  • [2] Effect of High-Temperature Annealing on Graphene with Nickel Contacts
    Kaplas, Tommi
    Jakstas, Vytautas
    Biciunas, Andrius
    Luksa, Algimantas
    Setkus, Arunas
    Niaura, Gediminas
    Kasalynas, Irmantas
    [J]. CONDENSED MATTER, 2019, 4 (01): : 1 - 7
  • [3] The influence of the annealing ambient on strain and doping in GaN during high-temperature processing
    Kuball, M
    Hayes, JM
    Bell, A
    Harrison, I
    Korakakis, D
    Foxon, CT
    [J]. PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1999, 176 (01): : 759 - 762
  • [4] High-Temperature Annealing of AlGaN
    Hagedorn, Sylvia
    Khan, Taimoor
    Netzel, Carsten
    Hartmann, Carsten
    Walde, Sebastian
    Weyers, Markus
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2020, 217 (23):
  • [5] Doping of high-temperature superconductors
    Meretliev, Sh.
    Sadykov, K.B.
    Berkeliev, A.
    [J]. Turkish Journal of Physics, 2000, 24 (01): : 39 - 48
  • [6] Structural Engineering of Nanocarbons Comprising Graphene Frameworks via High-Temperature Annealing
    Pirabul, Kritin
    Pan, Zheng-Ze
    Sunahiro, Shogo
    Liu, Hongyu
    Kanamaru, Kazuya
    Yoshii, Takeharu
    Nishihara, Hirotomo
    [J]. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2023, 96 (06) : 510 - 518
  • [7] Direct formation of graphene layers on diamond by high-temperature annealing with a Cu catalyst
    Ueda, K.
    Aichi, S.
    Asano, H.
    [J]. DIAMOND AND RELATED MATERIALS, 2016, 63 : 148 - 152
  • [8] High-temperature annealing and nuclear-transmutation doping of GaAs bombarded by reactor neutrons
    Brudnyi, VN
    Novikov, VA
    Peshev, VV
    Kolin, NG
    Noifekh, AI
    [J]. SEMICONDUCTORS, 1997, 31 (07) : 686 - 690
  • [9] High-temperature annealing and nuclear-transmutation doping of GaAs bombarded by reactor neutrons
    V. N. Brudnyi
    V. A. Novikov
    V. V. Peshev
    N. G. Kolin
    A. I. Noifekh
    [J]. Semiconductors, 1997, 31 : 686 - 690
  • [10] THE ROLE OF BORDER TRAPS IN MOS HIGH-TEMPERATURE POSTIRRADIATION ANNEALING RESPONSE
    FLEETWOOD, DM
    SHANEYFELT, MR
    RIEWE, LC
    WINOKUR, PS
    REBER, RA
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1993, 40 (06) : 1323 - 1334