Robust Hashing Learning via Multi-View Subspace Learning

被引:0
|
作者
Liu, Yang [1 ]
Feng, Lin [1 ]
Liu, Shenglan [2 ]
机构
[1] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian, Liaoning, Peoples R China
[2] Dalian Univ Technol, Sch Control Sci & Engn, Dalian, Liaoning, Peoples R China
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hashing learning has attracted increasing attention these years with the explosive increase of data. The hashing learning can be divided into two steps. Firstly, obtain the low dimensional representation of the original data. Secondly, quantize the real number vector of the low dimensional representation of each data point and map them to binary codes. Most of the existing methods measure the original data only from one perspective. This paper introduces the multi-view methods to the hashing learning field, and proposes a hashing learning framework utilizing the multi-view methods. The experimental results illustrate that our algorithm outperforms several the other state-of-the-art methods.
引用
收藏
页码:1850 / 1855
页数:6
相关论文
共 50 条
  • [1] Multi-view spectral clustering via robust local subspace learning
    Lin Feng
    Lei Cai
    Yang Liu
    Shenglan Liu
    [J]. Soft Computing, 2017, 21 : 1937 - 1948
  • [2] Multi-view spectral clustering via robust local subspace learning
    Feng, Lin
    Cai, Lei
    Liu, Yang
    Liu, Shenglan
    [J]. SOFT COMPUTING, 2017, 21 (08) : 1937 - 1948
  • [3] Multi-view subspace learning via bidirectional sparsity
    Fan, Ruidong
    Luo, Tingjin
    Zhuge, Wenzhang
    Qiang, Sheng
    Hou, Chenping
    [J]. PATTERN RECOGNITION, 2020, 108
  • [4] Incorporate Hashing with Multi-view Learning
    Tang, Jingjing
    Li, Dewei
    [J]. 2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2016, : 853 - 859
  • [5] Robust Tensor Subspace Learning for Incomplete Multi-View Clustering
    Liang, Cheng
    Wang, Daoyuan
    Zhang, Huaxiang
    Zhang, Shichao
    Guo, Fei
    [J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36 (11) : 6934 - 6948
  • [6] Unsupervised Multi-view Subspace Learning via Maximizing Dependence
    Xu, Meixiang
    Zhu, Zhenfeng
    Zhao, Yao
    [J]. COMPUTER VISION, PT II, 2017, 772 : 137 - 148
  • [7] Robust multi-view learning via adaptive regression
    Jiang, Bingbing
    Xiang, Junhao
    Wu, Xingyu
    Wang, Yadi
    Chen, Huanhuan
    Cao, Weiwei
    Sheng, Weiguo
    [J]. Information Sciences, 2022, 610 : 916 - 937
  • [8] Robust multi-view learning via adaptive regression
    Jiang, Bingbing
    Xiang, Junhao
    Wu, Xingyu
    Wang, Yadi
    Chen, Huanhuan
    Cao, Weiwei
    Sheng, Weiguo
    [J]. INFORMATION SCIENCES, 2022, 610 : 916 - 937
  • [9] Clean and robust multi-level subspace representations learning for deep multi-view subspace clustering
    Xu, Kaiqiang
    Tang, Kewei
    Su, Zhixun
    Tan, Hongchen
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 252
  • [10] Tensorized Multi-view Subspace Representation Learning
    Zhang, Changqing
    Fu, Huazhu
    Wang, Jing
    Li, Wen
    Cao, Xiaochun
    Hu, Qinghua
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (8-9) : 2344 - 2361