Multi-scale Microaneurysms Segmentation Using Embedding Triplet Loss

被引:28
|
作者
Sarhan, Mhd Hasan [1 ,2 ]
Albarqouni, Shadi [1 ]
Yigitsoy, Mehmet [2 ]
Navab, Nassir [1 ,3 ]
Eslami, Abouzar [2 ]
机构
[1] Tech Univ Munich, Comp Aided Med Procedures, Munich, Germany
[2] Carl Zeiss Meditec AG, Munich, Germany
[3] Johns Hopkins Univ, Comp Aided Med Procedures, Baltimore, MD USA
关键词
Deep learning; Segmentation; Ophthalmology;
D O I
10.1007/978-3-030-32239-7_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning techniques are recently being used in fundus image analysis and diabetic retinopathy detection. Microaneurysms are an important indicator of diabetic retinopathy progression. We introduce a two-stage deep learning approach for microaneurysms segmentation using multiple scales of the input with selective sampling and embedding triplet loss. The model first segments on two scales and then the segmentations are refined with a classification model. To enhance the discriminative power of the classification model, we incorporate triplet embedding loss with a selective sampling routine. The model is evaluated quantitatively to assess the segmentation performance and qualitatively to analyze the model predictions. This approach introduces a 30.29% relative improvement over the fully convolutional neural network.
引用
收藏
页码:174 / 182
页数:9
相关论文
共 50 条
  • [1] MicroSeg: Multi-scale fusion learning for microaneurysms segmentation
    Wu, Yun
    Jiao, Ge
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 37
  • [2] Detection of microaneurysms using multi-scale correlation coefficients
    Zhang, Bob
    Wu, Xiangqian
    You, Jane
    Li, Qin
    Karray, Fakhri
    [J]. PATTERN RECOGNITION, 2010, 43 (06) : 2237 - 2248
  • [3] Microaneurysms detection in retinal images using a multi-scale approach
    Soares, Ivo
    Castelo-Branco, Miguel
    Pinheiro, Antonio
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [4] MESTrans: Multi-scale embedding spatial transformer for medical image segmentation
    Liu, Yatong
    Zhu, Yu
    Xin, Ying
    Zhang, Yanan
    Yang, Dawei
    Xu, Tao
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 233
  • [5] ADVERSARIAL LEARNING WITH MULTI-SCALE LOSS FOR SKIN LESION SEGMENTATION
    Xue, Yuan
    Xu, Tao
    Huang, Xiaolei
    [J]. 2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 859 - 863
  • [6] Brain Tumor Segmentation Using a 3D FCN with Multi-scale Loss
    Jesson, Andrew
    Arbel, Tal
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 : 392 - 402
  • [7] A dense multi-scale context and asymmetric pooling embedding network for smoke segmentation
    Wen, Gang
    Zhou, Fangrong
    Ma, Yutang
    Pan, Hao
    Geng, Hao
    Cao, Jun
    Li, Kang
    Yuan, Feiniu
    [J]. IET COMPUTER VISION, 2024, 18 (02) : 236 - 246
  • [8] O(N) Implicit Subspace Embedding for Unsupervised Multi-scale Image Segmentation
    Zhou, Hongbo
    Cheng, Qiang
    [J]. 2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,
  • [9] Multi-scale watershed segmentation
    Olsen, OF
    [J]. GAUSSIAN SCALE-SPACE THEORY, 1997, 8 : 191 - 200
  • [10] Multi-scale contour segmentation
    Mokhtarian, F
    [J]. SCALE-SPACE THEORY IN COMPUTER VISION, 1997, 1252 : 296 - 307