A new finite element realization of the perfectly matched layer method for Helmholtz scattering problems on polygonal domains in two dimensions

被引:42
|
作者
Zschiedrich, L [1 ]
Klose, R [1 ]
Schädle, A [1 ]
Schmidt, F [1 ]
机构
[1] Konrad Zuse Zentrum Berlin, D-14195 Berlin, Germany
关键词
transparent boundary conditions; perfectly matched layer; pole condition;
D O I
10.1016/j.cam.2005.03.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we propose a new finite element realization of the Perfectly Matched Layer method (PML-method). Our approach allows to deal with a wide class of polygonal domains and with certain types of inhomogeneous exterior domains. Among the covered inhomogeneities are open waveguide structures playing an essential role in integrated optics. We give a detailed insight into implementation aspects. Numerical examples show exponential convergence behavior to the exact solution with the thickness of the PML sponge layer. (c) 2005 Published by Elsevier B.V.
引用
收藏
页码:12 / 32
页数:21
相关论文
共 50 条
  • [1] Convergence of an Anisotropic Perfectly Matched Layer Method for Helmholtz Scattering Problems
    Liang, Chao
    Xiang, Xueshuang
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2016, 9 (03) : 358 - 382
  • [2] A NEW PERFECTLY MATCHED LAYER METHOD FOR THE HELMHOLTZ EQUATION IN NONCONVEX DOMAINS
    Li, Buyang
    Li, Yonglin
    Zheng, Weiying
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2023, 83 (02) : 666 - 694
  • [3] An hp Adaptive Uniaxial Perfectly Matched Layer Method for Helmholtz Scattering Problems
    Chen, Zhiming
    Guo, Benqi
    Xiao, Yuanming
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 5 (2-4) : 546 - 564
  • [4] AN ANISOTROPIC PERFECTLY MATCHED LAYER METHOD FOR HELMHOLTZ SCATTERING PROBLEMS WITH DISCONTINUOUS WAVE NUMBER
    Chen, Zhiming
    Liang, Chao
    Xiang, Xueshuang
    INVERSE PROBLEMS AND IMAGING, 2013, 7 (03) : 663 - 678
  • [5] Solution of electromagnetic inverse medium scattering problems by the adaptive finite element method and perfectly matched layer
    Rachowicz, Waldemar
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2013, 21 (06) : 968 - 986
  • [6] FINITE ELEMENT METHOD FOR A NONLINEAR PERFECTLY MATCHED LAYER HELMHOLTZ EQUATION WITH HIGH WAVE NUMBER
    Jiang, Run
    Li, Yonglin
    Wu, Haijun
    Zou, Jun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (05) : 2866 - 2896
  • [7] Perfectly matched layer in three dimensions for the time-domain finite element method applied to radiation problems
    Rylander, T
    Jin, JM
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (04) : 1489 - 1499
  • [9] On the Attenuation of the Perfectly Matched Layer in Electromagnetic Scattering Problems with the Spectral Element Method
    Mahariq, I.
    Kuzuoglu, M.
    Tarman, I. H.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2014, 29 (09): : 701 - 710
  • [10] Perfectly matched layer for the time domain finite element method
    Rylander, T
    Jin, JM
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 200 (01) : 238 - 250