Limit Cycles Bifurcating from the Period Annulus of Quasi-Homogeneous Centers

被引:48
|
作者
Li, Weigu [1 ]
Llibre, Jaume [2 ]
Yang, Jiazhong [1 ]
Zhang, Zhifen [1 ]
机构
[1] Peking Univ, Dept Math, Beijing 100871, Peoples R China
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
关键词
Homogeneous centers; Quasi-homogeneous centers; Limit cycles; QUADRATIC HAMILTONIAN-SYSTEMS; COMPLETE ABELIAN-INTEGRALS; HILBERTS 16TH PROBLEM; VECTOR-FIELDS; POLYNOMIAL PERTURBATIONS; EXPONENTIAL ESTIMATE; ISOCHRONOUS CENTERS; ELLIPTIC INTEGRALS; LINEAR ESTIMATE; ALMOST-ALL;
D O I
10.1007/s10884-008-9126-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide upper bounds for the maximum number of limit cycles bifurcating from the period annulus of any homogeneous and quasi-homogeneous center, which can be obtained using the Abelian integral method of first order. We show that these bounds are the best possible using the Abelian integral method of first order. We note that these centers are in general non-Hamiltonian. As a consequence of our study we provide the biggest known number of limit cycles surrounding a unique singular point in terms of the degree n of the system for arbitrary large n.
引用
收藏
页码:133 / 152
页数:20
相关论文
共 50 条
  • [1] Limit Cycles Bifurcating from the Period Annulus of Quasi-Homogeneous Centers
    Weigu Li
    Jaume Llibre
    Jiazhong Yang
    Zhifen Zhang
    Journal of Dynamics and Differential Equations, 2009, 21 : 133 - 152
  • [2] Limit cycles bifurcating from planar polynomial quasi-homogeneous centers
    Gine, Jaume
    Grau, Maite
    Llibre, Jaume
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (12) : 7135 - 7160
  • [3] The number of limit cycles bifurcating from the period annulus of quasi-homogeneous Hamiltonian systems at any order
    Francoise, Jean-Pierre
    He, Hongjin
    Xiao, Dongmei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 276 : 318 - 341
  • [4] On the Limit Cycles Bifurcating from Piecewise Quasi-Homogeneous Differential Center
    Li, Shimin
    Wu, Kuilin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (07):
  • [5] LIMIT CYCLES BIFURCATING FROM THE PERIODIC ANNULUS OF CUBIC HOMOGENEOUS POLYNOMIAL CENTERS
    Llibre, Jaume
    Lopes, Bruno D.
    de Moraes, Jaime R.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [6] Limit Cycles Bifurcating from Planar Polynomial Quasi-Homogeneous Centers of Weight-Degree 3 with Nonsmooth Perturbations
    Sui, Shiyou
    Xu, Weijiao
    Zhang, Yongkang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (11):
  • [7] Shape and period of limit cycles bifurcating from a class of Hamiltonian period annulus
    Prohens, R.
    Torregrosa, J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 81 : 130 - 148
  • [8] Bifurcation of Limit Cycles from a Quasi-Homogeneous Degenerate Center
    Geng, Fengjie
    Lian, Hairong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (01):
  • [9] Limit cycles bifurcating from the periodic annulus of the weight-homogeneous polynomial centers of weight-degree 2
    Llibre, J.
    Lopes, B. D.
    de Moraes, J. R.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 : 47 - 54
  • [10] MAXIMUM NUMBER OF LIMIT CYCLES BIFURCATING FROM THE PERIOD ANNULUS OF CUBIC POLYNOMIAL SYSTEMS
    Shi, Hongwei
    Bai, Yuzhen
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (01) : 177 - 187