Inference in semiparametric dynamic models for binary longitudinal data

被引:48
|
作者
Chib, Siddhartha [1 ]
Jeliazkov, Ivan
机构
[1] Washington Univ, Sch Business, St Louis, MO 63130 USA
[2] Univ Calif Irvine, Dept Econ, Irvine, CA 92697 USA
关键词
average covariate effect; Bayes factor; Bayesian model comparison; clustered data; correlated binary data; labor force participation; longitudinal data; marginal likelihood; Markov chain Monte Carlo; Markov process priors; nonparametric estimation; partially linear model;
D O I
10.1198/016214505000000871
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article deals with the analysis of a hierarchical sermparametric model for dynamic binary longitudinal responses. The main complicating components of the model are an unknown covariate function and serial correlation in the errors. Existing estimation methods for models with these features are of O(N-3), where N is the total number of observations in the sample. Therefore, nonparametric estimation is largely infeasible when the sample size is large, as in typical in the longitudinal setting. Here we propose a new O(N) Markov chain Monte Carlo based algorithm for estimation of the nonparametric function when the errors are correlated, thus contributing to the growing literature on semiparametric and nonparametric mixed-effects models for binary data. In addition, we address the problem of model choice to enable the formal comparison of our semiparametric model with competing parametric and semiparametric specifications. The performance of the methods is illustrated with detailed studies involving simulated and real data.
引用
收藏
页码:685 / 700
页数:16
相关论文
共 50 条
  • [1] Semiparametric Inference in Dynamic Binary Choice Models
    Norets, A.
    Tang, X.
    [J]. REVIEW OF ECONOMIC STUDIES, 2014, 81 (03): : 1229 - 1262
  • [2] Inference in semiparametric binary response models with interval data
    Wan, Yuanyuan
    Xu, Haiqing
    [J]. JOURNAL OF ECONOMETRICS, 2015, 184 (02) : 347 - 360
  • [3] Bayesian Inference in Semiparametric Mixed Models for Longitudinal Data
    Li, Yisheng
    Lin, Xihong
    Mueller, Peter
    [J]. BIOMETRICS, 2010, 66 (01) : 70 - 78
  • [4] SEMIPARAMETRIC ESTIMATION OF DYNAMIC BINARY CHOICE PANEL DATA MODELS
    Ouyang, Fu
    Yang, Thomas Tao
    [J]. ECONOMETRIC THEORY, 2024,
  • [5] Bayesian Inference of Dynamic Mediation Models for Longitudinal Data
    Zhao, Saijun
    Zhang, Zhiyong
    Zhang, Hong
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2024, 31 (01) : 14 - 26
  • [6] DISTRIBUTED ESTIMATION AND INFERENCE FOR SEMIPARAMETRIC BINARY RESPONSE MODELS
    Chen, Xi
    Jing, Wenbo
    Liu, Weidong
    Zhang, Yichen
    [J]. ANNALS OF STATISTICS, 2024, 52 (03): : 922 - 947
  • [7] SEMIPARAMETRIC BAYESIAN INFERENCE FOR DYNAMIC TOBIT PANEL DATA MODELS WITH UNOBSERVED HETEROGENEITY
    Li, Tong
    Zheng, Xiaoyong
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2008, 23 (06) : 699 - 728
  • [8] Semiparametric Estimation with Profile Algorithm for Longitudinal Binary Data
    Suliadi, Suliadi
    Ibrahim, Noor Akma
    Daud, Isa
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (01) : 138 - 152
  • [9] Bayesian Semiparametric Symmetric Models for Binary Data
    Diniz, Marcio Augusto
    de Braganca Pereira, Carlos Alberto
    Polpo, Adriano
    [J]. INTERDISCIPLINARY BAYESIAN STATISTICS, EBEB 2014, 2015, 118 : 323 - 335
  • [10] Penalized quadratic inference functions for semiparametric varying coefficient partially linear models with longitudinal data
    Tian, Ruiqin
    Xue, Liugen
    Liu, Chunling
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 132 : 94 - 110