Identification of metabolic system parameters using global optimization methods

被引:60
|
作者
Polisetty, Pradeep K. [1 ]
Voit, Eberhard O. [2 ,3 ]
Gatzke, Edward P. [1 ]
机构
[1] Univ S Carolina, Dept Chem Engn, Swearingen Engn Ctr, Columbia, SC 29208 USA
[2] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[3] Emory Univ, Atlanta, GA 30332 USA
关键词
D O I
10.1186/1742-4682-3-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The problem of estimating the parameters of dynamic models of complex biological systems from time series data is becoming increasingly important. Methods and results: Particular consideration is given to metabolic systems that are formulated as Generalized Mass Action (GMA) models. The estimation problem is posed as a global optimization task, for which novel techniques can be applied to determine the best set of parameter values given the measured responses of the biological system. The challenge is that this task is nonconvex. Nonetheless, deterministic optimization techniques can be used to find a global solution that best reconciles the model parameters and measurements. Specifically, the paper employs branch-and-bound principles to identify the best set of model parameters from observed time course data and illustrates this method with an existing model of the fermentation pathway in Saccharomyces cerevisiae. This is a relatively simple yet representative system with five dependent states and a total of 19 unknown parameters of which the values are to be determined. Conclusion: The efficacy of the branch-and-reduce algorithm is illustrated by the S. cerevisiae example. The method described in this paper is likely to be widely applicable in the dynamic modeling of metabolic networks.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [1] Delay system identification using global optimization methods
    Wang, MX
    Chen, X
    Qian, JX
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 701 - 705
  • [3] Parameter identification for leaky aquifers using global optimization methods
    Yeh, Hund-Der
    Lin, Yu-Chung
    Huang, Yen-Chen
    HYDROLOGICAL PROCESSES, 2007, 21 (07) : 862 - 872
  • [4] Parameters identification of a photovoltaic module in a thermal system using meta-heuristic optimization methods
    Bechouat M.
    Younsi A.
    Sedraoui M.
    Soufi Y.
    Yousfi L.
    Tabet I.
    Touafek K.
    International Journal of Energy and Environmental Engineering, 2017, 8 (4) : 331 - 341
  • [5] Methods for Full Global Optimization of Klystron Parameters
    Baikov, A. Yu
    Baikova, O. A.
    2019 SYSTEMS OF SIGNAL SYNCHRONIZATION, GENERATING AND PROCESSING IN TELECOMMUNICATIONS (SYNCHROINFO), 2019,
  • [6] RIGOROUS GLOBAL OPTIMIZATION OF SYSTEM PARAMETERS
    Makino, K.
    Berz, M.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2014, 10 (02): : 61 - 71
  • [7] Optimization of Design Parameters for Radiofrequency Identification Tag Rectifier using Taguchi Methods
    Fahsyar, Puteri Nor Aznie
    Soin, Norhayati
    IETE TECHNICAL REVIEW, 2012, 29 (02) : 157 - 161
  • [8] Metabolic system identification and optimization in continuous culture
    Gao, Jinggui
    Feng, Enmin
    Xiu, Zhilong
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (10) : 1426 - 1444
  • [9] Global optimization approaches to parameters identification in an immune competition model
    Afraites, Lebkir
    Bellouquid, Abdelghani
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2014, 5
  • [10] Dynamic Identification of the KUKA LBR iiwa Robot With Retrieval of Physical Parameters Using Global Optimization
    Xu, Tian
    Fan, Jizhuang
    Chen, Yiwen
    Ng, Xianyao
    Ang, Marcelo H., Jr.
    Fang, Qianqian
    Zhu, Yanhe
    Zhao, Jie
    IEEE ACCESS, 2020, 8 : 108018 - 108031