Multimodal Motor Imagery BCI Based on EEG and NIRS

被引:0
|
作者
Ivaylov, Ivaylo [1 ]
Lazarova, Milena [1 ]
Manolova, Agata [2 ]
机构
[1] Tech Univ Sofia, Fac Comp Syst & Technol, Dept Comp Syst, 8 Kliment Ohridski Blvd, Sofia 1000, Bulgaria
[2] Tech Univ Sofia, Fac Telecommun, Dept Radio Commun & Video Technol, 8 Kliment Ohridski Blvd, Sofia 1000, Bulgaria
关键词
Brain computer interface; EEG; Multimodal BCI; NIRS; CLASSIFICATION; COMMUNICATION; FUSION;
D O I
10.1109/ICEST52640.2021.9483551
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Brain-computer interface comprises technologies for brain activity identification used in many application fields such as motor imagery, disease or mental state detection. Multimodal approach that utilizes hybrid data can be improve motor imagery classification. The paper explores utilization of several classification techniques for multimodal electroencephalography (EEG) and near-infrared spectroscopy (NIRS) data classification in motor imagery BCI. Five classifiers used in the evaluation are Logistic Regression, K-Nearest Neighbours, Support Vector Machines, Linear Regression, SVC Radial Basis Regression and their performance is compared on EEG and EEG+NIRS datasets for motor imagery tasks classification.
引用
收藏
页码:73 / 76
页数:4
相关论文
共 50 条
  • [1] Integrating EEG and NIRS improves BCI performance during motor imagery
    Wang, Zhongpeng
    Cao, Cong
    Zhou, Yijie
    Chen, Long
    Gu, Bin
    Liu, Shuang
    Xu, Minpeng
    He, Feng
    Ming, Dong
    [J]. 2021 10TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2021, : 511 - 514
  • [2] Motor imagery performance evaluation using hybrid EEG-NIRS for BCI
    Khan, M. Jawad
    Hong, Keum-Shik
    Naseer, Noman
    Bhutta, M. Raheel
    [J]. 2015 54TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2015, : 1150 - 1155
  • [3] A Multimodal fNIRS and EEG-Based BCI Study on Motor Imagery and Passive Movement
    Yu, Juanhong
    Ang, Kai Keng
    Guan, Cuntai
    Wang, Chuanchu
    [J]. 2013 6TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2013, : 5 - 8
  • [4] Motor Imagery Detection with Wavelet Analysis for NIRS-based BCI
    Koo, Bonkon
    Hanh Vu
    Lee, Hwan-Gon
    Shin, Hyung-Cheul
    Choi, Seungjin
    [J]. 2016 4TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2016,
  • [5] Motor imagery based EEG features visualization for BCI applications
    Tariq, Madiha
    Trivailo, Pavel M.
    Simic, Milan
    [J]. KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES-2018), 2018, 126 : 1936 - 1944
  • [6] INDEPENDENT EEG COMPONENTS ARE MEANINGFUL (FOR BCI BASED ON MOTOR IMAGERY)
    Kerechanin, Y., V
    Bobrov, P. D.
    Frolov, A. A.
    Husek, D.
    [J]. NEURAL NETWORK WORLD, 2021, 31 (05) : 355 - 375
  • [7] Detection of Motor Imagery Movements in EEG-based BCI
    Bagh, Niraj
    Reddy, T. Janardhan
    Reddy, M. Ramasubba
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2020, 36 (05) : 1079 - 1091
  • [8] EEG Classification for Multiclass Motor Imagery BCI
    Liu, Chong
    Wang, Hong
    Lu, Zhiguo
    [J]. 2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 4450 - 4453
  • [9] Predicting Motor Imagery BCI Performance Based on EEG Microstate Analysis
    Cui, Yujie
    Xie, Songyun
    Fu, Yingxin
    Xie, Xinzhou
    [J]. BRAIN SCIENCES, 2023, 13 (09)
  • [10] EEG Signals Based Motor Imagery and Movement Classification for BCI Applications
    Tasar, Beyda
    Yaman, Orhan
    [J]. 2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 1425 - 1429