A FUNCTIONAL INEQUALITY FOR THE GAMMA FUNCTION

被引:0
|
作者
Alzer, Horst
机构
[1] Morsbacher Str. 10
关键词
Gamma function; functional inequality; Euler's constant;
D O I
10.1142/S0219530513500103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let alpha and beta be real numbers. We prove that the functional inequality Gamma(x)Gamma(y) <= Gamma(x Gamma G(y)(alpha) + y Gamma(x)(beta)) holds for all positive real numbers x and y if and only if alpha = beta = 1/gamma(1 - gamma) = 4.09772 ... Here, gamma denotes Euler's constant.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A gamma function inequality
    Lossers, O. P.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (01): : 83 - 84
  • [2] A gamma function inequality
    Amdeberhan, T
    Zeleke, M
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (04): : 376 - 376
  • [3] A GAMMA FUNCTION INEQUALITY
    MEYER, WW
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (08): : 600 - 600
  • [4] A NOTE ON A GAMMA FUNCTION INEQUALITY
    Ivady, Peter
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2009, 3 (02): : 227 - 236
  • [5] A Double Inequality for Gamma Function
    Xiaoming Zhang
    Yuming Chu
    [J]. Journal of Inequalities and Applications, 2009
  • [6] GAMMA-FUNCTION INEQUALITY
    FOREGGER, T
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1976, 83 (06): : 490 - 491
  • [7] A Double Inequality for Gamma Function
    Zhang, Xiaoming
    Chu, Yuming
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
  • [8] On a gamma function inequality of Gautschi
    Alzer, H
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2002, 45 : 589 - 600
  • [9] A harmonic mean inequality for the gamma function
    Alzer, H
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 87 (02) : 195 - 198
  • [10] A power mean inequality for the gamma function
    Alzer, H
    [J]. MONATSHEFTE FUR MATHEMATIK, 2000, 131 (03): : 179 - 188