Poly(ethylene glycol), abbreviated as PEG, was covalently attached to the surface of human red blood cells (RBC) and the effects of such coating on the regions near the cell's glycocalyx were explored by means of cell electrophoresis. RBC electrophoretic mobilities were measured, in polymer-free buffers of various ionic strengths, as functions of PEG molecular mass (3.35, 18.5, 35.0, 35.9 kDa), geometry, (linear or 8-arm branched) and polymer/RBC ratio during attachment. The results indicate marked decreases of the mobility (up to 85%) which were affected by polymer molecular mass and geometry. Since PEG is neutral and its covalent attachment only removes positively-charged amino groups on the cell membrane, such decreases of mobility likely reflect structural changes near and within the RBC glycocalyx. Experimental results were analyzed using an extended "hairy sphere" model to consider friction and thickness of the polymer layer. Calculated polymer layer thickness increased with molecular mass for linear PEGs and was less extended for a branched PEG of similar molecular mass. Friction within the polymer layer increased with polymer/RBC ratio and for the linear PEGs was inversely related to molecular mass; friction was greatest for the branched PEG. Our results are consistent with the effects of attached PEGs on RBC aggregation and surface antigenic site masking, and suggest the usefulness of electrophoretic mobility techniques for studies of bound neutral polymers.