Quantification ofMargalefidinium polykrikoidesBlooms along the South Coast of Korea Using Airborne Hyperspectral Imagery

被引:10
|
作者
Shin, Jisun [1 ,2 ]
Kim, Soo Mee [3 ]
Kim, Keunyong [1 ]
Ryu, Joo-Hyung [1 ,2 ]
机构
[1] Korea Inst Ocean Sci & Technol KIOST, Korea Ocean Satellite Ctr, 385 Haeyang Ro, Busan 49111, South Korea
[2] KIOST Korea Maritime & Ocean Univ KMOU, Ocean Sci & Technol Sch, 727 Taejong Ro, Busan 49112, South Korea
[3] Korea Inst Ocean Sci & Technol KIOST, Maritime ICT R&D Ctr, 385 Haeyang Ro, Busan 49111, South Korea
关键词
Margalefidinium polykrikoides; red tide cell abundance; the south coast of Korea; hyperspectral imagery; KARENIA-BREVIS BLOOMS; HARMFUL ALGAL BLOOMS; CHLOROPHYLL-A CONCENTRATION; REMOTE-SENSING TECHNIQUES; GULF-OF-MEXICO; RED-TIDE; COCHLODINIUM-POLYKRIKOIDES; TOXIC DINOFLAGELLATE; COLOR; OCEAN;
D O I
10.3390/rs12152463
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The red tide bloom-forming dinoflagellateMargalefidinium polykrikoidesis well known for its harmful effects on marine organisms, and for killing fish in aquaculture cages via gill clogging at a high cell abundance. To minimize the damage caused by red tide blooms, it is essential to understand their detailed spatial distribution with high accuracy. Airborne hyperspectral imagery (HSI) is useful for quantifying red tide cell abundance because it provides substantial information on optical features related to red tide species. However, because published red tide indexes were developed for multichannel ocean color sensors, there are some limitations to applying them directly to HSI. In this study, we propose a new index for quantifyingM.polykrikoidesblooms along the south coast of Korea and generate aM.polykrikoidescell abundance map using HSI. A new index for estimating cell abundance was proposed using the pairs ofM.polykrikoidescell abundances and in situ spectra. After optimization of the published red tide indexes and band correlation analyses, the green-to-fluorescence ratio (GFR) index was proposed based on red tide spectral characteristics. The GFR index was computed from the green (524 and 583 nm) and fluorescence wavelength bands (666 and 698 nm) and converted into red tide cell abundance using a second-order polynomial regression model. The newly proposed GFR index showed the best performance, with a coefficient of determination (R-2) of 0.52, root mean squared error (RMSE) of 877.98 cells mL(-1), and mean bias error (MBE) of -18.42 cells mL(-1), when applied to atmospherically corrected HSI. TheM.polykrikoidescell abundance map generated from the GFR index provides precise spatial distribution information and allowed us to estimate a wide range of cell abundance up to 5000 cells mL(-1). This study indicates the potential of the GFR index for quantifyingM.polykrikoidescell abundance from HSI with a reasonably high level of accuracy.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Classifying hyperspectral airborne imagery for vegetation survey along coastlines
    Kempeneers, P
    Deronde, B
    Bertels, L
    Debruyn, W
    De Backer, S
    Scheunders, P
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 1475 - 1478
  • [2] Estimation of chlorophyll-a concentration with semi-analytical algorithms using airborne hyperspectral imagery in Nakdong river of South Korea
    Jeon, Eui-Ik
    Kang, Seong-Joo
    Lee, Keum-Young
    SPATIAL INFORMATION RESEARCH, 2019, 27 (01) : 97 - 107
  • [3] Estimation of chlorophyll-a concentration with semi-analytical algorithms using airborne hyperspectral imagery in Nakdong river of South Korea
    Eui-Ik Jeon
    Seong-Joo Kang
    Keum-Young Lee
    Spatial Information Research, 2019, 27 : 97 - 107
  • [4] Evaluating AISA plus Hyperspectral Imagery for Mapping Black Mangrove along the South Texas Gulf Coast
    Yang, Chenghai
    Everitt, James H.
    Fletcher, Reginald S.
    Jensen, Ryan R.
    Mausel, Paul W.
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2009, 75 (04): : 425 - 435
  • [5] Geological classification of hyperspectral imagery in Hongseong area, South Korea
    Hyun, CU
    Park, HD
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 2914 - 2916
  • [6] Classification of Herbaceous Vegetation Using Airborne Hyperspectral Imagery
    Burai, Peter
    Deak, Balazs
    Valko, Orsolya
    Tomor, Tamas
    REMOTE SENSING, 2015, 7 (02) : 2046 - 2066
  • [7] Classification of Typha-dominated wetlands using airborne hyperspectral imagery along Lake Ontario, USA
    Suir, Glenn M.
    Wilcox, Douglas A.
    Reif, Molly
    AQUATIC ECOSYSTEM HEALTH & MANAGEMENT, 2021, 24 (02) : 140 - 155
  • [8] Mapping three invasive weeds using airborne hyperspectral imagery
    Yang, Chenghai
    Everitt, James H.
    ECOLOGICAL INFORMATICS, 2010, 5 (05) : 429 - 439
  • [9] Classification of Grassland Successional Stages Using Airborne Hyperspectral Imagery
    Mockel, Thomas
    Dalmayne, Jonas
    Prentice, Honor C.
    Eklundh, Lars
    Purschke, Oliver
    Schmidtlein, Sebastian
    Hall, Karin
    REMOTE SENSING, 2014, 6 (08) : 7732 - 7761
  • [10] Airborne Radar Clutter Simulation Using Hyperspectral and Lidar Imagery
    Seyfioglu, Mehmet Saygin
    Gurbuz, Sevgi Zubeyde
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,