Shift-modulation invariant spaces on LCA groups

被引:10
|
作者
Cabrelli, Carlos [1 ]
Paternostro, Victoria
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
关键词
shift-modulation invariant space; LCA groups; range functions; fibers; WEYL-HEISENBERG FRAMES;
D O I
10.4064/sm211-1-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A (K, A) shift-modulation invariant space is a subspace of L-2 (G) that is invariant under translations along elements in K and modulations by elements in A. Here G is a locally compact abelian group, and K and Lambda are closed subgroups of G and the dual group (G) over cap, respectively. We provide a characterization of shift-modulation invariant spaces when K and Lambda are uniform lattices. This extends previous results known for L-2 (R-d). We develop fiberization techniques and suitable range functions adapted to LCA groups needed to provide the desired characterization.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [1] The structure of shift-modulation invariant spaces: The rational case
    Bownik, Marcin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 244 (01) : 172 - 219
  • [2] Shift-invariant spaces on LCA groups
    Cabrelli, Carlos
    Paternostro, Victoria
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (06) : 2034 - 2059
  • [3] Extra invariance of shift-invariant spaces on LCA groups
    Anastasio, Magali
    Cabrelli, Carlos
    Paternostro, Victoria
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) : 530 - 537
  • [4] Rearrangement-invariant spaces of functions on LCA groups
    Gulisashvili, A
    JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 156 (02) : 384 - 410
  • [5] Shift invariant spaces on compact groups
    Radha, R.
    Kumar, N. Shravan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (04): : 485 - 497
  • [6] Shift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
    Tousi, R. Raisi
    Gol, R. A. Kamyabi
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2011, 6 (02): : 21 - 32
  • [7] On sampling in shift invariant spaces
    Chen, W
    Itoh, S
    Shiki, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (10) : 2802 - 2810
  • [8] Characterization of Shift-Invariant Spaces on a Class of Nilpotent Lie Groups with Applications
    Bradley Currey
    Azita Mayeli
    Vignon Oussa
    Journal of Fourier Analysis and Applications, 2014, 20 : 384 - 400
  • [9] Characterization of Shift-Invariant Spaces on a Class of Nilpotent Lie Groups with Applications
    Currey, Bradley
    Mayeli, Azita
    Oussa, Vignon
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2014, 20 (02) : 384 - 400
  • [10] Sampling in Unitary Invariant Subspaces Associated to LCA Groups
    Garcia, A. G.
    Hernandez-Medina, M. A.
    Perez-Villalon, G.
    RESULTS IN MATHEMATICS, 2017, 72 (04) : 1725 - 1745