Fully Blind Peptide-Protein Docking with pepATTRACT

被引:85
|
作者
Schindler, Christina E. M. [1 ]
de Vries, Sjoerd J. [1 ]
Zacharias, Martin [1 ]
机构
[1] Tech Univ Munich, Phys Dept T38, D-85748 Garching, Germany
关键词
BINDING-SITES; FLEXIBLE DOCKING; PREDICTION; IDENTIFICATION; INTERFACE; COMPLEXES; MODEL; SIMULATIONS; ALGORITHM; KNOWLEDGE;
D O I
10.1016/j.str.2015.05.021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Peptide-protein interactions are ubiquitous in the cell and form an important part of the interactome. Computational docking methods can complement experimental characterization of these complexes, but current protocols are not applicable on the proteome scale. Here, we present a new fully blind flexible peptide-protein docking protocol, pepATTRACT, which combines a rapid coarse-grained global peptide docking search of the entire protein surface with a two-stage atomistic flexible refinement. Global unbound-unbound docking yielded near-native models for 70% of the docking cases when testing the protocol on the largest benchmark of peptide-protein complexes available to date. This performance is similar to that of state-of-the-art local docking protocols that rely on information about the binding site. Upon restricting the search to the peptide binding region, the resulting pepATTRACT-local approach outperformed existing methods.
引用
收藏
页码:1507 / 1515
页数:9
相关论文
共 50 条
  • [1] The pepATTRACT web server for blind, large-scale peptide-protein docking
    de Vries, Sjoerd J.
    Rey, Julien
    Schindler, Christina E. M.
    Zacharias, Martin
    Tuffery, Pierre
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (W1) : W361 - W364
  • [2] HPEPDOCK: a web server for blind peptide-protein docking based on a hierarchical algorithm
    Zhou, Pei
    Jin, Bowen
    Li, Hao
    Huang, Sheng-You
    [J]. NUCLEIC ACIDS RESEARCH, 2018, 46 (W1) : W443 - W450
  • [3] Extensive benchmark of rDock as a peptide-protein docking tool
    Daniel Soler
    Yvonne Westermaier
    Robert Soliva
    [J]. Journal of Computer-Aided Molecular Design, 2019, 33 : 613 - 626
  • [4] Harnessing protein folding neural networks for peptide-protein docking
    Tsaban, Tomer
    Varga, Julia K.
    Avraham, Orly
    Ben-Aharon, Ziv
    Khramushin, Alisa
    Schueler-Furman, Ora
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [5] Comparison of two docking methods for peptide-protein interactions
    Yu, Qiuying
    Wang, Fangyu
    Hu, Xiaofei
    Xing, Guangxu
    Deng, Ruiguang
    Guo, Junqing
    Cheng, Anchun
    Wang, Jing
    Hao, Junfang
    Zhao, Dong
    Teng, Man
    Zhang, Gaiping
    [J]. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2018, 98 (10) : 3722 - 3727
  • [6] Extensive benchmark of rDock as a peptide-protein docking tool
    Soler, Daniel
    Westermaier, Yvonne
    Soliva, Robert
    [J]. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (07) : 613 - 626
  • [7] Parallel Evolutionary Optimization Algorithms for Peptide-Protein Docking
    Poluyan, Sergey
    Ershov, Nikolay
    [J]. MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS 2017 (MMCP 2017), 2018, 173
  • [8] Protein-protein and peptide-protein docking and refinement using ATTRACT in CAPRI
    Schindler, Christina E. M.
    de Beauchene, Isaure Chauvot
    de Vries, Sjoerd J.
    Zacharias, Martin
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2017, 85 (03) : 391 - 398
  • [9] Fully Blind Docking at the Atomic Level for Protein-Peptide Complex Structure Prediction
    Yan, Chengfei
    Xu, Xianjin
    Zou, Xiaoqin
    [J]. STRUCTURE, 2016, 24 (10) : 1842 - 1853
  • [10] A fragment-based docking simulation for investigating peptide-protein bindings
    Liao, Jun-min
    Wang, Yeng-Tseng
    Lin, Chen-lung Steve
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (16) : 10436 - 10442