Application of the Dem'jenenko-Manin method to certain families of curves of genus 2 and 3

被引:9
|
作者
Kulesz, L
机构
[1] Univ Paris 07, UFR Math, F-75251 Paris 05, France
[2] Univ Nacl Gen Sarmiento, Inst Desarollo Humano, RA-1663 Buenos Aires, DF, Argentina
关键词
D O I
10.1006/jnth.1998.2339
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give examples of families of curves of genus 2 and 3 defined over Q with two independent morphisms to an elliptic curve of rank 1 over Q. The method of Dem'janenko-Manin may be applied and it will allow us to determine completely the set of rational points of any curve in the families that we consider. (C) 1999 Academic Press.
引用
收藏
页码:130 / 146
页数:17
相关论文
共 50 条
  • [1] Uniform Manin-Mumford for a family of genus 2 curves
    DeMarco, Laura
    Krieger, Holly
    Ye, Hexi
    ANNALS OF MATHEMATICS, 2020, 191 (03) : 949 - 1001
  • [3] Certain curves over Q(t) of genus 2, 3, 4
    Bremner, A
    ARCHIV DER MATHEMATIK, 1999, 73 (02) : 126 - 131
  • [4] Certain curves over Q (t) of genus 2, 3, 4
    Andrew Bremner
    Archiv der Mathematik, 1999, 73 : 126 - 131
  • [5] On K2 of Certain Families of Curves
    Liu, Hang
    de Jeu, Rob
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (21) : 10929 - 10958
  • [6] Mahler Measure of Families of Polynomials Defining Genus 2 and 3 Curves
    Liu, Hang
    Qin, Hourong
    EXPERIMENTAL MATHEMATICS, 2023, 32 (02) : 321 - 336
  • [7] Genus 3 curves with many involutions and application to maximal curves in characteristic 2
    Nart, Enric
    Ritzenthaler, Christophe
    ARITHMETIC, GEOMETRY, CRYPTOGRAPHY AND CODING THEORY 2009, 2010, 521 : 71 - +
  • [8] The 2-adic CM method for genus 2 curves with application to cryptography
    LORIA - Projet SPACES, Campus Scientifique, BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
    不详
    不详
    不详
    Lect. Notes Comput. Sci., (114-129):
  • [9] The 2-Adic CM method for genus 2 curves with application to cryptography
    Gaudry, P.
    Houtmann, T.
    Kohel, D.
    Ritzenthaler, C.
    Weng, A.
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2006, 2006, 4284 : 114 - +
  • [10] Families of genus 2 curves with small embedding degree
    Hitt, Laura
    JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2009, 3 (01) : 19 - 36