Nonlinear damping and dephasing in nanomechanical systems

被引:29
|
作者
Atalaya, Juan [1 ,7 ]
Kenny, Thomas W. [2 ]
Roukes, M. L. [3 ,4 ,5 ,6 ]
Dykman, M. I. [1 ]
机构
[1] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[3] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
[4] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[5] CALTECH, Dept Appl Phys, Pasadena, CA 91125 USA
[6] CALTECH, Dept Bioengn, Pasadena, CA 91125 USA
[7] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
MECHANICAL RESONATORS; FORCE DETECTION; MASS SENSOR; OSCILLATORS; ABSORPTION; GRAPHENE; RESOLUTION; FRICTION; CRYSTAL; SOLIDS;
D O I
10.1103/PhysRevB.94.195440
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a microscopic theory of nonlinear damping and dephasing of low-frequency eigenmodes in nanomechanical and micromechanical systems. The mechanism of the both effects is scattering of thermally excited vibrational modes off the considered eigenmode. The scattering is accompanied by energy transfer of 2 (h) over bar omega(0) for nonlinear damping and is quasielastic for dephasing. We develop a formalism that allows studying both spatially uniform systems and systems with a strong nonuniformity, which is smooth on the typical wavelength of thermal modes but is pronounced on their mean free path. The formalism accounts for the decay of thermal modes, which plays amajor role in the nonlinear damping and dephasing. We identify the nonlinear analogs of the Landau-Rumer, thermoelastic, and Akhiezer mechanisms and find the dependence of the relaxation parameters on the temperature and the geometry of a system.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Thermoelastic damping in micro- and nanomechanical systems
    Lifshitz, R
    Roukes, ML
    PHYSICAL REVIEW B, 2000, 61 (08) : 5600 - 5609
  • [2] Dephasing in nonlinear quantum scissors systems
    Kowalewska-Kudlaszyk, A.
    OPTICS COMMUNICATIONS, 2012, 285 (24) : 5543 - 5548
  • [3] Temperature-Dependent Nonlinear Damping in Palladium Nanomechanical Resonators
    Kumar, Shelender
    Rebari, Shishram
    Pal, Satyendra Prakash
    Yadav, Shyam Sundar
    Kumar, Abhishek
    Aggarwal, Aaveg
    Indrajeet, Sagar
    Venkatesan, Ananth
    NANO LETTERS, 2021, 21 (07) : 2975 - 2981
  • [4] Methods for Atomistic Simulations of Linear and Nonlinear Damping in Nanomechanical Resonators
    Nourmohammadi, Zahra
    Mukherjee, Sankha
    Joshi, Surabhi
    Song, Jun
    Vengallatore, Srikar
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2015, 24 (05) : 1462 - 1470
  • [5] Nonlinear Stiffness and Nonlinear Damping in Atomically Thin MoS2 Nanomechanical Resonators
    Kaisar, Tahmid
    Lee, Jaesung
    Li, Donghao
    Shaw, Steven W.
    Feng, Philip X. -L.
    NANO LETTERS, 2022, 22 (24) : 9831 - 9838
  • [6] Modeling and Observation of Nonlinear Damping in Dissipation-Diluted Nanomechanical Resonators
    Catalini, Letizia
    Rossi, Massimiliano
    Langman, Eric C.
    Schliesser, Albert
    PHYSICAL REVIEW LETTERS, 2021, 126 (17)
  • [7] Damping of Nanomechanical Resonators
    Unterreithmeier, Quirin P.
    Faust, Thomas
    Kotthaus, Joerg P.
    PHYSICAL REVIEW LETTERS, 2010, 105 (02)
  • [8] Nonlinear effects and dephasing in disordered electron systems
    Raimondi, R
    Schwab, P
    Castellani, C
    PHYSICAL REVIEW B, 1999, 60 (08): : 5818 - 5831
  • [9] Signal processing and control in nonlinear nanomechanical systems
    Badzey, R. L.
    Zolfagharkhani, G.
    Shim, S. -B.
    Gaidarzhy, A.
    Mohanty, P.
    DEVICE APPLICATIONS OF NONLINEAR DYNAMICS, 2006, : 37 - 49
  • [10] Nonlinear Mode-Coupling in Nanomechanical Systems
    Matheny, M. H.
    Villanueva, L. G.
    Karabalin, R. B.
    Sader, J. E.
    Roukes, M. L.
    NANO LETTERS, 2013, 13 (04) : 1622 - 1626