Some Counterexamples for Cayley-Hamilton Theorem for Doubly Infinite Matrices

被引:0
|
作者
Slowik, Roksana [1 ]
机构
[1] Silesian Tech Univ, Fac Appl Math, Kaszubska 23, PL-44100 Gliwice, Poland
关键词
Cayley-Hamilton theorem; Doubly infinite matrix; Periodic matrix;
D O I
10.1007/s40840-019-00873-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the question about generalization of the Cayley-Hamilton theorem. Namely, the problem if for every banded periodic doubly infinite matrixAthere exists polynomialQsuch thatQ(A) is a matrix with constant diagonals. We present a class of doubly infinite matrices for which such polynomial does not exist.
引用
收藏
页码:3349 / 3359
页数:11
相关论文
共 50 条
  • [1] Some Counterexamples for Cayley–Hamilton Theorem for Doubly Infinite Matrices
    Roksana Słowik
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 3349 - 3359
  • [2] SOME REMARKS ON CAYLEY-HAMILTON THEOREM
    KLARNER, DA
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1976, 83 (05): : 367 - 369
  • [3] CAYLEY-HAMILTON THEOREM
    MCCARTHY, CA
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (04): : 390 - 391
  • [4] Generalization of Cayley-Hamilton Theorem for Multivariate Rational Matrices
    Xing, Wei
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (03) : 631 - 634
  • [5] Some extensions of the Cayley-Hamilton theorem and their applications
    Kaczorek, Tadeusz
    [J]. PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS 2018, 2018, 10808
  • [6] A CONVERSE FOR THE CAYLEY-HAMILTON THEOREM
    CHICONE, C
    KALTON, NJ
    PAPICK, IJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (02): : 134 - 136
  • [7] The quantum Cayley-Hamilton theorem
    Zhang, JJ
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 129 (01) : 101 - 109
  • [8] A Generalization of the Cayley-Hamilton Theorem
    Chen, Lizhou
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2012, 119 (04): : 340 - 342
  • [9] THE CAYLEY-HAMILTON THEOREM FOR SUPERMATRICES
    URRUTIA, LF
    MORALES, N
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (09): : L441 - L447
  • [10] NOTE ON THE CAYLEY-HAMILTON THEOREM
    GREENBERG, MJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (03): : 193 - 195