Visualization in audio-based music information retrieval

被引:10
|
作者
Cooper, Matthew
Foote, Jonathan
Pampalk, Elias
Tzanetakis, George
机构
[1] FX Palo Alto Lab, Palo Alto, CA 94304 USA
[2] Austrian Res Inst Artificial Intelligence, A-1010 Vienna, Austria
[3] Univ Victoria, Dept Comp Sci, Victoria, BC V8W 3P6, Canada
[4] Univ Victoria, Dept Mus, Victoria, BC V8W 3P6, Canada
关键词
D O I
10.1162/comj.2006.30.2.42
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Music information retrieval (MIR) is steadily growing as a research area, as can be evidenced by the international conferences on music information retrieval (ISMIR) series and the increasing number of MIR-related publications. At present, various visualization techniques developed in the context of music information retrieval for representing polyphonic audio signals are already available. The techniques fall into two major categories: techniques for visualizing a single file or piece of music, and techniques for visual collections of pieces. The former includes similariy matrix, beat spectrum and beat spectrogram, beat histograms, real-time audio classification display, and mapping time-varying timbre to color. The latter covers timbre spaces, music similarity via self-organizing maps and smoothed data histograms, and combining different views. Regardless of the category, all of these techniques use sophisticated analysis algorithms to automatically extract content information from music stored in digital audio format.
引用
收藏
页码:42 / 62
页数:21
相关论文
共 50 条
  • [1] Audio-based Deep Music Emotion Recognition
    Liu, Tong
    Han, Li
    Ma, Liangkai
    Guo, Dongwei
    [J]. 6TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, MANUFACTURING, MODELING AND SIMULATION (CDMMS 2018), 2018, 1967
  • [2] AUDIO-BASED DETECTION OF EXPLICIT CONTENT IN MUSIC
    Vaglio, Andrea
    Hennequin, Romain
    Moussallam, Manuel
    Richard, Gael
    d'Alche-Buc, Florence
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 526 - 530
  • [3] A Survey of Audio-Based Music Classification and Annotation
    Fu, Zhouyu
    Lu, Guojun
    Ting, Kai Ming
    Zhang, Dengsheng
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2011, 13 (02) : 303 - 319
  • [4] Audio Features in Music Information Retrieval
    Grzywczak, Daniel
    Gwardys, Grzegorz
    [J]. ACTIVE MEDIA TECHNOLOGY, AMT 2014, 2014, 8610 : 187 - 199
  • [5] Improved Algorithms of Music Information Retrieval based on Audio Fingerprint
    Jie, Tang
    Gang, Liu
    Jun, Guo
    [J]. IITAW: 2009 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATIONS WORKSHOPS, 2009, : 367 - 371
  • [6] Audio-Based Music Classification with DenseNet and Data Augmentation
    Bian, Wenhao
    Wang, Jie
    Zhuang, Bojin
    Yang, Jiankui
    Wang, Shaojun
    Xiao, Jing
    [J]. PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2019, 11672 : 56 - 65
  • [7] Music Popularity: Metrics, Characteristics, and Audio-Based Prediction
    Lee, Junghyuk
    Lee, Jong-Seok
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (11) : 3173 - 3182
  • [8] Audio-based Near-Duplicate Video Retrieval with Audio Similarity Learning
    Avgoustinakis, Pavlos
    Kordopatis-Zilos, Giorgos
    Papadopoulos, Symeon
    Symeonidis, Andreas L.
    Kompatsiaris, Ioannis
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5828 - 5835
  • [9] Finding structure in audio for music information retrieval
    Pardo, B
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2006, 23 (03) : 126 - 132
  • [10] Audio indexing for efficient music information retrieval
    Karydis, I
    Nanopoulos, A
    Papadopoulos, AN
    Manolopoulos, Y
    [J]. 11TH INTERNATIONAL MULTIMEDIA MODELLING CONFERENCE, PROCEEDINGS, 2005, : 22 - 29