Compressive creep of SiC whisker/Ti3SiC2composites at high temperature in air

被引:10
|
作者
Dash, Apurv [1 ,2 ]
Malzbender, Juergen [1 ]
Dash, Khushbu [3 ]
Rasinski, Marcin [1 ]
Vassen, Robert [1 ]
Guillon, Olivier [1 ,2 ,4 ]
Gonzalez-Julian, Jesus [1 ,2 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, Dept Ceram & Refractory Mat, Inst Mineral Engn GHI, Aachen, Germany
[3] Indian Inst Technol Madras, Met & Mat Engn, Chennai, Tamil Nadu, India
[4] Julich Aachen Res Alliance, JARA Energy, Julich, Germany
关键词
CMC; compression; creep; MAX phases; SiC whiskers; Ti3SiC2; TENSILE CREEP; MAX PHASES; TI3SIC2; BEHAVIOR; FINE; COMPOSITES; CR2ALC; DISLOCATIONS; STABILITY; MECHANISM;
D O I
10.1111/jace.17323
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The compressive creep of a SiC whisker (SiCw) reinforced Ti(3)SiC(2)MAX phase-based ceramic matrix composites (CMCs) was studied in the temperature range 1100-1300 degrees C in air for a stress range 20-120 MPa. Ti(3)SiC(2)containing 0, 10, and 20 vol% of SiC(w)was sintered by spark plasma sintering (SPS) for subsequent creep tests. The creep rate of Ti(3)SiC(2)decreased by around two orders of magnitude with every additional 10 vol% of SiCw. The main creep mechanisms of monolithic Ti(3)SiC(2)and the 10% CMCs appeared to be the same, whereas for the 20% material, a different mechanism is indicated by changes in stress exponents. The creep rates of 20% composites tend to converge to that of 10% at higher stress. Viscoplastic and viscoelastic creep is believed to be the deformation mechanism for the CMCs, whereas monolithic Ti(3)SiC(2)might have undergone only dislocation-based deformation. The rate controlling creep is believed to be dislocation based for all the materials which is also supported by similar activation energies in the range 650-700 kJ/mol.
引用
收藏
页码:5952 / 5965
页数:14
相关论文
共 50 条
  • [1] High Temperature Properties of Ti3SiC2-SiC Composites
    Zhu, Degui
    Tang, Huiyi
    Sun, Hongliang
    Guo, Shuangquan
    [J]. CHINESE CERAMICS COMMUNICATIONS, 2010, 105-106 : 222 - 225
  • [2] HIGH-TEMPERATURE CREEP DEFORMATION OF ALUMINA SIC-WHISKER COMPOSITES
    LIN, HT
    BECHER, PF
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1991, 74 (08) : 1886 - 1893
  • [3] Synthesize Ti3SiC2 and Ti3SiC2-Diamond Composites at High Pressure and High Temperature
    Zhou, Aiguo
    Li, Liang
    Su, Taichao
    Li, Shangsheng
    [J]. HIGH-PERFORMANCE CERAMICS VII, PTS 1 AND 2, 2012, 512-515 : 671 - 675
  • [4] COMPRESSIVE CREEP OF SIC-WHISKER-REINFORCED AL2O3
    DEARELLANOLOPEZ, AR
    CUMBRERA, FL
    DOMINGUEZRODRIGUEZ, A
    GORETTA, KC
    ROUTBORT, JL
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1990, 73 (05) : 1297 - 1300
  • [5] Sintering of SiC/Ti3SiC2 composites with high SiC contents *
    Chahhou, B.
    Roger, J.
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (16) : 7314 - 7325
  • [6] Room temperature creep of SiC/SiC composites
    Morscher, GN
    Gyekenyesi, A
    [J]. 25TH ANNUAL CONFERENCE ON COMPOSITES, ADVANCED CERAMICS, MATERIALS, AND STRUCTURES: A, 2001, 22 (03): : 547 - 552
  • [7] Study of high-temperature compressive deformation of Ti3SiC2/TiC ceramics composites
    Zhang Lingzhen
    Shi Suiin
    [J]. RARE METAL MATERIALS AND ENGINEERING, 2007, 36 : 218 - 220
  • [8] Long time oxidation study of Ti3SiC2,Ti3SiC2/SiC, and Ti3SiC2/TiC composites in air
    Barsoum, MW
    Ho-Duc, LH
    Radovic, M
    El-Raghy, T
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (04) : B166 - B175
  • [9] Oxidation behavior of SiC/SiC composites in air at high temperature
    Hong Zhi-liang
    Zhang Qiao-jun
    Li Kai-yuan
    Guo Hong-bao
    Zhang Cheng-yu
    Liu Yong-sheng
    [J]. CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2021, 49 (05): : 144 - 150
  • [10] High temperature oxidation behavior and mechanism of Ti3SiC2-SiC nanocomposites in air
    Zhang, Jianfeng
    Wang, Lianjun
    Jiang, Wan
    Chen, Lidong
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (06) : 1531 - 1538