A self-supervised learning framework for classifying Microarray gene expression data

被引:0
|
作者
Lu, Yijuan [1 ]
Tian, Qi
Liu, Feng
Sanchez, Maribel
Wang, Yufeng
机构
[1] Univ Texas, Dept Comp Sci, San Antonio, TX 78285 USA
[2] Univ Texas, Hlth Sci Ctr, Dept Pharmacol, San Antonio, TX 78285 USA
[3] Univ Texas, Dept Biol, San Antonio, TX 78285 USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is important to develop computational methods that can effectively resolve two intrinsic problems in microarray data: high dimensionality and small sample size. In this paper, we propose a self-supervised learning framework for classifying microarray gene expression data using Kernel Discriminant-EM (KDEM) algorithm. This framework applies self-supervised learning techniques in an optimal nonlinear discriminating subspace. It efficiently utilizes a large set of unlabeled data to compensate for the insufficiency of a small set of labeled data and it extends linear algorithm in DEM to kernel algorithm to handle nonlinearly separable data in a lower dimensional space. Extensive experiments on the Plasmodium falciparum expression profiles show the promising performance of the approach.
引用
收藏
页码:686 / 693
页数:8
相关论文
共 50 条
  • [1] Self-supervised learning for gene classification on microarray data
    Lu, Yijuan
    Tian, Qi
    Sanchez, Maribel
    Wang, Yufeng
    [J]. 2006 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS, 2006, : 105 - +
  • [2] Interactive learning for classifying microarray gene expression data
    Lu, Yijuan
    Tian, Qi
    Sanchez, Maribel
    Wang, Yufeng
    [J]. 2006 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS, 2006, : 103 - +
  • [3] Self-Supervised Deep Learning Framework for Anomaly Detection in Traffic Data
    Morris, Clint
    Yang, Jidong J.
    Chorzepa, Mi Geum
    Kim, S. Sonny
    Durham, Stephan A.
    [J]. JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2022, 148 (05)
  • [4] HistoSSL: Self-Supervised Representation Learning for Classifying Histopathology Images
    Jin, Xu
    Huang, Teng
    Wen, Ke
    Chi, Mengxian
    An, Hong
    [J]. MATHEMATICS, 2023, 11 (01)
  • [5] A Self-Supervised Learning Framework for Sequential Recommendation
    Jia, Renqi
    Bai, Xu
    Zhou, Xiaofei
    Pan, Shirui
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [6] Self-supervised learning for classifying paranasal anomalies in the maxillary sinus
    Bhattacharya, Debayan
    Behrendt, Finn
    Becker, Benjamin Tobias
    Maack, Lennart
    Beyersdorff, Dirk
    Petersen, Elina
    Petersen, Marvin
    Cheng, Bastian
    Eggert, Dennis
    Betz, Christian
    Hoffmann, Anna Sophie
    Schlaefer, Alexander
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2024, 19 (09) : 1713 - 1721
  • [7] SSLRec: A Self-Supervised Learning Framework for Recommendation
    Ren, Xubin
    Xia, Lianghao
    Yang, Yuhao
    Wei, Wei
    Wang, Tianle
    Cai, Xuheng
    Huang, Chao
    [J]. PROCEEDINGS OF THE 17TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, WSDM 2024, 2024, : 567 - 575
  • [8] Self-Supervised Learning for Pairwise Data Refinement
    Abrego, Gustavo Hernandez
    Liang, Bowen
    Wang, Wei
    Parekh, Zarana
    Yang, Yinfei
    Sung, Yunhsuan
    [J]. 1ST CONFERENCE OF THE ASIA-PACIFIC CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 10TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (AACL-IJCNLP 2020), 2020, : 435 - 446
  • [9] Self-Supervised Triplet Contrastive Learning for Classifying Endometrial Histopathological Images
    Zhao, Fengjun
    Wang, Zhiwei
    Du, Hongyan
    He, Xiaowei
    Cao, Xin
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (12) : 5970 - 5981
  • [10] Self-supervised deep learning of gene-gene interactions for improved gene expression recovery
    Wei, Qingyue
    Islam, Md Tauhidul
    Zhou, Yuyin
    Xing, Lei
    [J]. BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)