EM tomographic image reconstruction using polar voxels

被引:8
|
作者
Soriano, A. [1 ]
Rodriguez-Alvarez, M. J. [1 ]
Iborra, A. [2 ]
Sanchez, F. [1 ]
Carles, M. [1 ]
Conde, P. [1 ]
Gonzalez, A. J. [1 ]
Hernandez, L. [1 ]
Moliner, L. [1 ]
Orero, A. [1 ]
Vidal, L. F. [1 ]
Benlloch, J. M. [1 ]
机构
[1] Ctr Mixto CSIC UPV CIEMAT, Inst Instrumentac Imagen Mol I3M, E-46022 Valencia, Spain
[2] Univ Politecn Valencia, Inst Matemat Multidisciplinar, E-46022 Valencia, Spain
来源
关键词
Image reconstruction in medical imaging; Data reduction methods; CT;
D O I
10.1088/1748-0221/8/01/C01004
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The splitting of the field of view (FOV) in polar voxels is proposed in this work in order to obtain an efficient description of a cone-beam computed tomography (CT) scanner. The proposed symmetric-polar pixelation makes it possible to deal with the 3D iterative reconstruction considering a number of projections and voxel sizes typical in CT preclinical imaging. The performance comparison, between the filtered backprojection (FBP) and 3D maximum likelihood expectation maximization (MLEM) reconstruction algorithm for CT, is presented. It is feasible to achieve the hardware spatial resolution limit with the considered pixelation. The image quality achieved with MLEM and FBP have been analyzed. The results obtained with both algorithms in clinical images have been compared too. Although the polar-symmetric pixelation is presented in the context of CT imaging, it can be applied to any other tomographic technique as long as the scan comprises the measurement of an object under several projection angles.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Tomographic Image Reconstruction Using Abstractions
    Alvarez, J. A.
    Roca, J.
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2009, 2009, 5717 : 334 - 341
  • [2] TOMOGRAPHIC RECONSTRUCTION OF POLAR PLUMES
    Auchere, F.
    Guennou, C.
    Barbey, N.
    UNDERSTANDING SOLAR ACTIVITY: ADVANCES AND CHALLENGES, 2012, 55 : 207 - +
  • [3] Expectation maximization (EM) algorithms using polar symmetries for computed tomography (CT) image reconstruction
    Rodriguez-Alvarez, M. J.
    Soriano, A.
    Iborra, A.
    Sanchez, F.
    Gonzalez, A. J.
    Conde, P.
    Hernandez, L.
    Moliner, L.
    Orero, A.
    Vidal, L. F.
    Benlloch, J. M.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2013, 43 (08) : 1053 - 1061
  • [4] Tomographic image reconstruction using training images
    Soltani, Sara
    Andersen, Martin S.
    Hansen, Per Christian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 313 : 243 - 258
  • [5] Tomographic image reconstruction using neural networks
    Rodrigues, RGS
    Pelá, CA
    Roque, AC
    METMBS'00: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS AND ENGINEERING TECHNIQUES IN MEDICINE AND BIOLOGICAL SCIENCES, VOLS I AND II, 2000, : 27 - 33
  • [6] Tomographic image reconstruction using artificial neural networks
    Paschalis, P
    Giokaris, ND
    Karabarbounis, A
    Loudos, GK
    Maintas, D
    Papanicolas, CN
    Spanoudaki, V
    Tsoumpas, C
    Stiliaris, E
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 527 (1-2): : 211 - 215
  • [7] ALTERNATIVES TO VOXELS FOR IMAGE REPRESENTATION IN ITERATIVE RECONSTRUCTION ALGORITHMS
    LEWITT, RM
    PHYSICS IN MEDICINE AND BIOLOGY, 1992, 37 (03): : 705 - 716
  • [8] List-mode image reconstruction for positron emission tomography using tetrahedral voxels
    Gillam, John E.
    Angelis, Georgios I.
    Meikle, Steven R.
    PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (18): : N497 - N513
  • [9] Image Reconstruction Using Tetrahedral Voxels: A List Mode Implementation for Awake Animal Imaging
    Gillam, J. E.
    Angelis, G. I.
    Ryder, W. J.
    Meikle, S. R.
    2014 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2014,
  • [10] On Hallucinations in Tomographic Image Reconstruction
    Bhadra, Sayantan
    Kelkar, Varun A.
    Brooks, Frank J.
    Anastasio, Mark A.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (11) : 3249 - 3260