A quality-controlled patient-derived tumor organoid biobank facilitates applications such as an integrated database of chemotherapeutic drug response using deep learning-based imaging methods

被引:0
|
作者
Valena, Scott [1 ]
Kshetri, Pratiksha [1 ]
Choi, Brandon [1 ]
Yoon, Ah Young [1 ]
Imamura, Shohei [2 ]
Kim, Seungil [1 ]
Doche, Michael E. [1 ]
Mumenthaler, Shannon M. [1 ]
机构
[1] USC, Lawrence J Ellison Inst Transformat Med, Los Angeles, CA USA
[2] Olympus Tokyo, Tokyo, Japan
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
3080
引用
收藏
页数:2
相关论文
共 2 条
  • [1] Imaging-Based Machine Learning Analysis of Patient-Derived Tumor Organoid Drug Response
    Spiller, Erin R.
    Ung, Nolan
    Kim, Seungil
    Patsch, Katherin
    Lau, Roy
    Strelez, Carly
    Doshi, Chirag
    Choung, Sarah
    Choi, Brandon
    Juarez Rosales, Edwin Francisco
    Lenz, Heinz-Josef
    Matasci, Naim
    Mumenthaler, Shannon M.
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [2] Patient-by-Patient Deep Transfer Learning for Drug-Response Profiling Using Confocal Fluorescence Microscopy of Pediatric Patient-Derived Tumor-Cell Spheroids
    Berker, Yannick
    ElHarouni, Dina
    Peterziel, Heike
    Fiesel, Petra
    Witt, Olaf
    Oehme, Ina
    Schlesner, Matthias
    Oppermann, Sina
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (12) : 3981 - 3999