A Modern Approach for Sign Language Interpretation Using Convolutional Neural Network

被引:10
|
作者
Paul, Pias [1 ]
Bhuiya, Moh. Anwar-Ul-Azim [1 ]
Ullah, Md. Ayat [1 ]
Saqib, Molla Nazmus [1 ]
Mohammed, Nabeel [1 ]
Momen, Sifat [1 ]
机构
[1] North South Univ, Dept Elect & Comp Engn, Plot 15,Block B, Dhaka 1229, Bangladesh
关键词
Image processing; CNN; Transfer learning; ASLR; Finger Spelling dataset; RECOGNITION;
D O I
10.1007/978-3-030-29894-4_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
There are nearly 70 million deaf people in the world. A significant portion of them and their families use sign language as a medium for communicating with each other. As automation is being gradually introduced to many parts of everyday life, the ability for machines to understand the act on sign language will be critical to creating an inclusive society. This paper presents multiple convolutional neural network based approaches, suitable for fast classification of hand sign characters. We propose two custom convolutional neural network (CNN) based architectures which are able to generalize 24 static American Sign Language (ASL) signs using only convolutional and fully connected layers. We compare these networks with transfer learning based approaches, where multiple pre-trained models were utilized. Our models have remarkably outperformed all the preceding models by accomplishing 86.52% and 85.88% accuracy on RGB images of the ASL Finger Spelling dataset.
引用
收藏
页码:431 / 444
页数:14
相关论文
共 50 条
  • [1] Sign language detection using convolutional neural network
    Rakshit P.
    Paul S.
    Dey S.
    Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (04) : 2399 - 2424
  • [2] Glove Based American Sign Language Interpretation Using Convolutional Neural Network and Data Glass
    Haidar, Galib Ibne
    Reefat, Hasin Ishraq
    2020 IEEE REGION 10 SYMPOSIUM (TENSYMP) - TECHNOLOGY FOR IMPACTFUL SUSTAINABLE DEVELOPMENT, 2020, : 370 - 373
  • [3] Recognition Bangla Sign Language using Convolutional Neural Network
    Islalm, Md Shafiqul
    Rahman, Md Moklesur
    Rahman, Md. Hafizur
    Arifuzzaman, Md
    Sassi, Roberto
    Aktaruzzaman, Md
    2019 INTERNATIONAL CONFERENCE ON INNOVATION AND INTELLIGENCE FOR INFORMATICS, COMPUTING, AND TECHNOLOGIES (3ICT), 2019,
  • [4] Indonesia Sign Language Recognition using Convolutional Neural Network
    Dwijayanti, Suci
    Hermawati
    Taqiyyah, Sahirah Inas
    Hikmarika, Hera
    Suprapto, Bhakti Yudho
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (10) : 415 - 422
  • [5] Bangla Sign Language Recognition using Convolutional Neural Network
    Yasir, Farhad
    Prasad, P. W. C.
    Alsadoon, Abeer
    Elchouemi, A.
    Sreedharan, Sasikumaran
    2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, INSTRUMENTATION AND CONTROL TECHNOLOGIES (ICICICT), 2017, : 49 - 53
  • [6] Interpretation of Swedish Sign Language Using Convolutional Neural Networks and Transfer Learning
    Halvardsson G.
    Peterson J.
    Soto-Valero C.
    Baudry B.
    SN Computer Science, 2021, 2 (3)
  • [7] Bengali Sign Language Recognition Using Deep Convolutional Neural Network
    Hossen, M. A.
    Govindaiah, Arun
    Sultana, Sadia
    Bhuiyan, Alauddin
    2018 JOINT 7TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV) AND 2018 2ND INTERNATIONAL CONFERENCE ON IMAGING, VISION & PATTERN RECOGNITION (ICIVPR), 2018, : 369 - 373
  • [8] Ethiopian sign language recognition using deep convolutional neural network
    Bekalu Tadele Abeje
    Ayodeji Olalekan Salau
    Abreham Debasu Mengistu
    Nigus Kefyalew Tamiru
    Multimedia Tools and Applications, 2022, 81 : 29027 - 29043
  • [9] Ethiopian sign language recognition using deep convolutional neural network
    Abeje, Bekalu Tadele
    Salau, Ayodeji Olalekan
    Mengistu, Abreham Debasu
    Tamiru, Nigus Kefyalew
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (20) : 29027 - 29043
  • [10] Sign Language Numeral Gestures Recognition Using Convolutional Neural Network
    Gruber, Ivan
    Ryumin, Dmitry
    Hruz, Marek
    Karpov, Alexey
    INTERACTIVE COLLABORATIVE ROBOTICS, ICR 2018, 2018, 11097 : 70 - 77