Histogram clustering for unsupervised segmentation and image retrieval

被引:61
|
作者
Puzicha, J
Hofmann, T
Buhmann, JM
机构
[1] Univ Bonn, Inst Informat 3, D-53117 Bonn, Germany
[2] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
[3] Int Comp Sci Inst, Berkeley, CA 94704 USA
关键词
histogram clustering; texture segmentation; multiscale annealing; image retrieval;
D O I
10.1016/S0167-8655(99)00056-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a novel statistical latent class model for probabilistic grouping of distributional and histogram data. Adopting the Bayesian framework, we propose to perform annealed maximum a posteriori estimation to compute optimal clustering solutions. In order to accelerate the optimization process, an efficient multiscale formulation is developed. We present a prototypical application of this method for unsupervised segmentation of textured images based on local distributions of Gabor coefficients. Benchmark results indicate superior performance compared to K-means clustering and proximity-based algorithms. In a second application the histogram clustering method is utilized to structure image databases for improved image retrieval. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:899 / 909
页数:11
相关论文
共 50 条
  • [1] Unsupervised histogram based color image segmentation
    Chenaoua, KS
    Bouridane, A
    Kurugollu, F
    [J]. ICECS 2003: PROCEEDINGS OF THE 2003 10TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS 1-3, 2003, : 240 - 243
  • [2] Image segmentation by unsupervised sparse clustering
    Jeon, BK
    Jung, YB
    Hong, KS
    [J]. WACV 2005: SEVENTH IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION, PROCEEDINGS, 2005, : 2 - 7
  • [3] Image segmentation by unsupervised sparse clustering
    Jeon, Byoung-Ki
    Jung, Yun-Beom
    Hong, Ki-Sang
    [J]. PATTERN RECOGNITION LETTERS, 2006, 27 (14) : 1650 - 1664
  • [4] Unsupervised 2D multiband histogram clustering and region merging for color image segmentation
    Lezoray, O
    [J]. PROCEEDINGS OF THE 3RD IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, 2003, : 267 - 270
  • [5] Unsupervised image segmentation using EM algorithm by histogram
    Huang, Zhi-Kai
    Liu, De-Hui
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS: WITH ASPECTS OF THEORETICAL AND METHODOLOGICAL ISSUES, 2007, 4681 : 1275 - +
  • [6] DIC: Deep Image Clustering for Unsupervised Image Segmentation
    Zhou, Lei
    Wei, Yufeng
    [J]. IEEE ACCESS, 2020, 8 : 34481 - 34491
  • [7] Unsupervised color image segmentation: A case of RGB histogram based K-means clustering initialization
    Basar, Sadia
    Ali, Mushtaq
    Ochoa-Ruiz, Gilberto
    Zareei, Mahdi
    Waheed, Abdul
    Adnan, Awais
    [J]. PLOS ONE, 2020, 15 (10):
  • [8] Unsupervised image segmentation using hierarchical clustering
    Ohkura, K
    Nishizawa, H
    Obi, T
    Hasegawa, A
    Yamaguchi, M
    Ohyama, N
    [J]. OPTICAL REVIEW, 2000, 7 (03) : 193 - 198
  • [9] Unsupervised Image Segmentation Using Hierarchical Clustering
    Keiko Ohkura
    Hidekazu Nishizawa
    Takashi Obi
    Akira Hasegawa
    Masahiro Yamaguchi
    Nagaaki Ohyama
    [J]. Optical Review, 2000, 7 : 193 - 198
  • [10] Histogram Methods for Unsupervised Clustering
    Benzel, Steven
    Stanescu, Ana
    [J]. ACMSE 2020: PROCEEDINGS OF THE 2020 ACM SOUTHEAST CONFERENCE, 2020, : 248 - 251