Trajectory Modeling of Longitudinal Binary Data: Application of the EM Algorithm for Mixture Models

被引:4
|
作者
Chu, Man-Kee M. [1 ]
Koval, John J. [2 ]
机构
[1] Univ Western Ontario, Dept Stat & Actuarial Sci, London, ON N6A 5B7, Canada
[2] Univ Western Ontario, Dept Epidemiol & Biostat, London, ON N6A 5B7, Canada
关键词
Binary data; Expectation-maximization algorithm; Longitudinal trajectories; Mixture models; MAXIMUM-LIKELIHOOD;
D O I
10.1080/03610918.2012.707455
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A developmental trajectory describes the course of behavior over time. Identifying multiple trajectories within an overall developmental process permits a focus on subgroups of particular interest. We introduce a framework for identifying trajectories by using the Expectation-Maximization (EM) algorithm to fit semiparametric mixtures of logistic distributions to longitudinal binary data. For performance comparison, we consider full maximization algorithms (PROC TRAJ in SAS), standard EM, and two other EM-based algorithms for speeding up convergence. Simulation shows that EM methods produce more accurate parameter estimates. The EM methodology is illustrated with a longitudinal dataset involving adolescents smoking behaviors.
引用
收藏
页码:495 / 519
页数:25
相关论文
共 50 条
  • [1] Recursive EM algorithm for finite mixture models with application to Internet traffic modeling
    Liu, Z
    Almhana, J
    Choulakian, V
    McGorman, R
    [J]. SECOND ANNUAL CONFERENCE ON COMMUNICATION NETWORKS AND SERVICES RESEARCH, PROCEEDINGS, 2004, : 198 - 207
  • [2] Online EM algorithm for mixture with application to internet traffic modeling
    Liu, Z
    Almhana, J
    Choulakian, V
    McGorman, R
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (04) : 1052 - 1071
  • [3] An accelerated EM algorithm for mixture models with uncertainty for rating data
    Rosaria Simone
    [J]. Computational Statistics, 2021, 36 : 691 - 714
  • [4] An accelerated EM algorithm for mixture models with uncertainty for rating data
    Simone, Rosaria
    [J]. COMPUTATIONAL STATISTICS, 2021, 36 (01) : 691 - 714
  • [5] A note on EM algorithm for mixture models
    Yao, Weixin
    [J]. STATISTICS & PROBABILITY LETTERS, 2013, 83 (02) : 519 - 526
  • [6] Mixture analysis of longitudinal binary data
    Formann, AK
    [J]. STATISTICS IN MEDICINE, 2006, 25 (09) : 1457 - 1469
  • [7] Competitive EM algorithm for finite mixture models
    Zhang, BB
    Zhang, CS
    Yi, X
    [J]. PATTERN RECOGNITION, 2004, 37 (01) : 131 - 144
  • [8] An EM Algorithm for Singular Gaussian Mixture Models
    Masmoudi, Khalil
    Masmoudi, Afif
    [J]. FILOMAT, 2019, 33 (15) : 4753 - 4767
  • [9] MIXTURE-MODELS, OUTLIERS, AND THE EM ALGORITHM
    AITKIN, M
    WILSON, GT
    [J]. TECHNOMETRICS, 1980, 22 (03) : 325 - 331
  • [10] Finite mixture modeling with mixture outcomes using the EM algorithm
    Muthén, B
    Shedden, K
    [J]. BIOMETRICS, 1999, 55 (02) : 463 - 469