Low temperature aluminum electrolysis in NaF-AlF3-BaF2-CaF2 bath system

被引:0
|
作者
Lu, HM
Qiu, ZX
Fang, KM
机构
[1] Univ Sci & Technol Beijing, Dept Physicochem, Beijing 100083, Peoples R China
[2] Northeastern Univ, Dept Nonferrous Met Met, Shenyang 110006, Peoples R China
关键词
low temperature; aluminum electrolysis; NaF-AlF3-BaF2-CaF2 bath system; aluminum floating;
D O I
暂无
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Multiple regression equations on liquidus temperature, electrical conductivity and bath density of NaF-AlF3-BaF2-CaF2 system were obtained from experiments designed using orthogonal regression method. In 100 A experimental cell with low melting point electrolyte at 750 degrees C, current efficiency(CE) was 90.57% and specific energy consumption was 12.27 kWh per kg Al. Because of the fact that aluminum metal obtained float on the surface of molten electrolyte, this electrolysis method was named as low temperature aluminum floating electrolysis. The results showed that the new low temperature aluminum electrolysis process in NaF-AlF3-BaF2-CaF2 bath system was practical and promising.
引用
收藏
页码:383 / 386
页数:4
相关论文
共 50 条
  • [21] COMPUTER-ANALYSIS OF PHASE-DIAGRAMS AND THERMODYNAMIC PROPERTIES OF CRYOLITE BASED SYSTEMS .2. THE ALF3-CAF2-LIF, ALF3-CAF2-NAF, AND CAF2-LIF-NAF SYSTEMS
    LIN, PL
    PELTON, AD
    SABOUNGI, ML
    METALLURGICAL TRANSACTIONS B-PROCESS METALLURGY, 1982, 13 (01): : 61 - 69
  • [22] RAMAN-SPECTROSCOPIC STUDY OF ALF3-CAF2-BAF2 GLASSES
    KAWAMOTO, Y
    KONO, A
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1986, 85 (03) : 335 - 345
  • [23] Liquidus Temperature of xNaF/AlF3-Al2O3-CaF2-MgF2-KF-y (LiAlO2/LiF) Molten Salts Energy System in Aluminum Electrolysis
    Fang, Zhao
    Dang, Yangyang
    Peng, Jiaxin
    Han, Zexun
    Ma, Nani
    Lv, Xiaojun
    Liu, Manbo
    Li, Linbo
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2018, 10 (01) : 81 - 86
  • [24] Crystallization Behavior of Glasses in the ZrF4-BaF2-LaF3-AlF3-NaF and HfF4-BaF2-LaF3-AlF3-NaF Systems Modified with Chlorine and Bromine Ions
    Brekhovskikh, M. N.
    Moiseeva, L. V.
    Shukshin, V. E.
    Zhidkova, I. A.
    Egorysheva, A. V.
    Fedorov, V. A.
    INORGANIC MATERIALS, 2019, 55 (02) : 173 - 179
  • [25] GLASS-FORMATION AND CRYSTALLIZATION IN ALF3-YF3-BAF2-CAF2-MGF2
    DAKUI, D
    FUDING, M
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1994, 168 (03) : 275 - 280
  • [26] PHASE-EQUILIBRIA IN THE SYSTEM CAF2-ALF3-NA3ALF6 AND PART OF THE SYSTEM CAF2-ALF3-NA3ALF6-AL2O3
    CRAIG, DF
    BROWN, JJ
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1980, 63 (5-6) : 254 - 261
  • [27] AlF3-YF3-BaF2-CaF2-MgF2-SrF2系统玻璃形
    董大奎,马福定,黄德新
    玻璃与搪瓷, 1995, (02) : 6 - 10
  • [28] Bath temperature and AlF3 control of an aluminium electrolysis cell
    Kolas, S.
    Store, T.
    CONTROL ENGINEERING PRACTICE, 2009, 17 (09) : 1035 - 1043
  • [29] Solubility of TiO2 in NaF-CaF2-BaF2 Melts
    Yoo, Jeong-Hyun
    Cho, Sung-Wook
    METALS AND MATERIALS INTERNATIONAL, 2018, 24 (06) : 1386 - 1393
  • [30] Phase Equilibria in the (0.54NaF–0.46AlF3)eut–CaF2 System
    A. V. Rudenko
    A. A. Red’kin
    S. V. Pershina
    E. A. Il’ina
    A. A. Kataev
    P. N. Chernen’kii
    Yu. P. Zaikov
    Russian Metallurgy (Metally), 2021, 2021 : 908 - 912