Nonperturbative Quantization a La Heisenberg: Modified Gravities, Wheeler-DeWitt Equations, and Monopoles in QCD

被引:3
|
作者
Dzhunushaliev, V. [1 ,2 ,3 ,4 ]
Folomeev, V. [2 ,3 ]
Quevedo, H. [2 ,5 ,6 ,7 ]
机构
[1] Al Farabi Kazakh Natl Univ, Dept Theoret & Nucl Phys, Alma Ata 050040, Kazakhstan
[2] Al Farabi Kazakh Natl Univ, Inst Expt & Theoret Phys, Alma Ata 050040, Kazakhstan
[3] NAS Kyrgyz Republ, Inst Physicotech Problems & Mat Sci, 265 A Chui St, Bishkek 720071, Kyrgyzstan
[4] Durban Univ Technol, Inst Syst Sci, POB 1334, ZA-4000 Durban, South Africa
[5] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, AP 70543, Mexico City 04510, DF, Mexico
[6] Univ Roma La Sapienza, Dipartimento Fis, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[7] Univ Roma La Sapienza, ICRA, Piazzale Aldo Moro 5, I-00185 Rome, Italy
来源
GRAVITATION & COSMOLOGY | 2019年 / 25卷 / 01期
关键词
CONFINEMENT; GAS;
D O I
10.1134/S0202289319010031
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
For field theories in which no small parameter is available, we use Heisenberg's quantization procedure to propose a definition of nonperturbative quantum states in terms of the complete set of Green functions. We present the corresponding quantization schemes in the case of Einstein gravity and gauge theories. To illustrate the procedure of quantization, we show that: (1) modified theories of gravity appear as an effective approximation of nonperturbative quantum gravity; (2) the Wheeler-DeWitt equations appear as a sort of approximation of the quantization procedure a la Heisenberg, and (3) it is possible to carry out explicit nonperturbative calculations in quantum chromodynamics, and we obtain the energy spectrum of a quantum monopole and some thermodynamic quantities for a gas of noninteracting quantum monopoles.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 18 条
  • [1] Nonperturbative Quantization à La Heisenberg: Modified Gravities, Wheeler-DeWitt Equations, and Monopoles in QCD
    V. Dzhunushaliev
    V. Folomeev
    H. Quevedo
    [J]. Gravitation and Cosmology, 2019, 25 : 1 - 17
  • [2] Wheeler-DeWitt quantization and singularities
    Falciano, F. T.
    Pinto-Neto, N.
    Struyve, W.
    [J]. PHYSICAL REVIEW D, 2015, 91 (04):
  • [3] Wheeler-DeWitt quantization for point-particles
    Struyve, Ward
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2021, 53 (03)
  • [4] Quantization of black holes in the Wheeler-DeWitt approach
    Brotz, T
    [J]. PHYSICAL REVIEW D, 1998, 57 (04) : 2349 - 2362
  • [5] On the coupling of relativistic particle to gravity and Wheeler-DeWitt quantization
    Pavsic, Matej
    [J]. MODERN PHYSICS LETTERS A, 2021, 36 (23)
  • [6] Wheeler-DeWitt quantization can solve the singularity problem
    Pinto-Neto, N.
    Falciano, F. T.
    Pereira, Roberto
    Sergio Santini, E.
    [J]. PHYSICAL REVIEW D, 2012, 86 (06):
  • [7] 3RD QUANTIZATION AND THE WHEELER-DEWITT EQUATION
    MCGUIGAN, M
    [J]. PHYSICAL REVIEW D, 1988, 38 (10): : 3031 - 3051
  • [8] Wheeler-DeWitt equation in five dimensions and modified QED
    Pavsic, Matej
    [J]. PHYSICS LETTERS B, 2012, 717 (4-5) : 441 - 446
  • [9] Modified friedmann scenario from the Wheeler-DeWitt equation
    Maziashvili, M
    [J]. PHYSICAL REVIEW D, 2005, 71 (02): : 027505 - 1
  • [10] Anisotropic cosmological models in terms of Raychaudhuri and Wheeler-DeWitt equations
    Fil'chenkov, M. L.
    Saibatalov, R. Kh.
    Laptev, Yu. P.
    Plotnikov, V. V.
    [J]. GRAVITATION & COSMOLOGY, 2009, 15 (02): : 148 - 150